WIND LOADING ANALYSIS - Chimneys, Stacks, and Vertical Tanks
Per ASCE 7-05 Code for Cantilevered Structures Classified as Other Structures

Job Name:		Subject:			
Job Number:		Originator:		Checker:	

Input Data:
mph (Wind Map, Figure 6-1)
(Occupancy Category from Table 1-1)
(Exposure Category from Sect. 6.5.6)
(Topographic Factor from Sect. 6.5.7)
ft. (Height of Vessel itself)
ft. (Height of Vessel Base Above Ground)
ft. (Diameter or Width of Surface Normal to Wind)
in. (Wall Thickness of Vessel) pcf (Vessel Material Unit Weight)

Elevation

Resulting Parameters and Coefficients:
If $z<15$ then: $K z=2.01^{*}(15 / z g)^{\wedge}(2 / \alpha)$
If $z>=15$ then: $K z=2.01^{*}(z / z g)^{\wedge}(2 / \alpha)$

$\begin{aligned} \alpha & = \\ \mathrm{zg} & = \end{aligned}$	7.00	(Table 6-2)	
	1200	(Table 6-2) (Table 6-1)	(Import. Factor)
$\mathrm{I}=$	1.00		
$\mathrm{h} / \mathrm{D}=$	20.000		
Freq., $\mathrm{f}=$	2.034	Hz. (f >= 1.0)) Rigid
Period, $\mathrm{T}=$	0.492	sec.	
$\mathrm{G}=$	0.850	(Gust Factor, S	Sect. 6.5.8)

Velocity Pressure (Sect. 6.5.10, Eq. 6-15):
$\mathrm{qz}=0.00256^{*} \mathrm{Kz}^{*} \mathrm{Kzt}^{*} \mathrm{Kd}^{*} \mathrm{~V}^{\wedge} 2{ }^{*} \mathrm{I}$
Net Design Wind Pressures (Sect. 6.5.13):
$\mathrm{p}=\mathrm{qz}{ }^{*} \mathrm{G}^{*} \mathrm{Cf}$ (psf)
Net Design Wind Forces (Sect. 6.5.15, Eq. 6-28):
$\mathrm{F}=\mathrm{qz}{ }^{*} \mathrm{G}^{*} \mathrm{Cf}{ }^{*} \mathrm{D}(\mathrm{lb} / \mathrm{ft})$

Wind Load Tabulation for Stack / Tank				
$\begin{gathered} \mathrm{z} \\ (\mathrm{ft} .) \\ \hline \end{gathered}$	Kz	$\begin{gathered} \mathrm{qz} \\ \text { (psf) } \end{gathered}$	$\begin{gathered} \hline \mathrm{p}=\mathrm{qz}^{*} \mathrm{G}^{*} \mathrm{Cf} \\ \text { (psf) } \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{F}=\mathrm{qz} \mathrm{Z}^{*} \mathrm{Cf}^{*} \mathrm{D} \\ (\mathrm{lb} / \mathrm{ft}) \\ \hline \end{gathered}$
50.00	0.81	15.97	10.18	40.72
55.00	0.83	16.41	10.46	41.85
60.00	0.85	16.82	10.73	42.90
65.00	0.87	17.21	10.97	43.89
70.00	0.89	17.58	11.21	44.83
75.00	0.91	17.93	11.43	45.72
80.00	0.93	18.26	11.64	46.58
85.00	0.94	18.58	11.85	47.39
90.00	0.96	18.89	12.04	48.17
95.00	0.97	19.18	12.23	48.92
100.00	0.99	19.47	12.41	49.64
105.00	1.00	19.74	12.58	50.34
110.00	1.02	20.00	12.75	51.01
120.00	1.04	20.51	13.07	52.30
130.00	1.07	20.98	13.38	53.51

Total Shear \& Moment @ Base of Vessel:

$\Sigma \mathrm{V}($ total $)$	$=3.83$
kips	
$\Sigma \mathrm{M}($ total $)$	$=159.74$
ft -kips	

Determination of Gust Effect Factor, G:

Flexible? No f $>=1.0 \mathrm{~Hz}$.
1: Simplified Method for Rigid Structure

$$
\mathrm{G}=0.85
$$

Parameters Used in Both Item \#2 and Item \#3 Calculations (from Table 6-2):

$\alpha^{\wedge}=$	0.143
$\mathrm{b}^{\wedge}=$	0.84
$\alpha(\mathrm{bar})=$	0.250
$b($ bar $)=$	0.45
$\mathrm{c}=$	0.30
l =	320
$\varepsilon($ bar $)=$	0.333
$z(\min)=$	30

Calculated Parameters Used in Both Rigid and/or Flexible Structure Calculations:

$$
\begin{aligned}
& \begin{aligned}
z(\text { bar }) & =48.00 \\
\mathrm{I}(\text { bar }) & =0.6^{*} \mathrm{~h}, \text { but not }<\mathrm{z}(\mathrm{~min}), \mathrm{ft} . \\
0.282 & =\mathrm{c}^{*}(33 / \mathrm{z}(\text { bar }))^{\wedge}(1 / 6), \text { Eq. } 6-5
\end{aligned} \\
& \mathrm{Lz}(\text { bar })=362.57=I^{*}(\mathrm{z}(\mathrm{bar}) / 33)^{\wedge}(\varepsilon(\text { bar })) \text {, Eq. 6-7 } \\
& \mathrm{gq}=\quad 3.4 \text { (3.4, per Sect. 6.5.8.1) } \\
& \mathrm{gv}=\quad 3.4 \text { (3.4, per Sect. 6.5.8.1) } \\
& \begin{array}{c|l|l}
\mathrm{gr} & =4.355 & =\left(2^{\star}\left(\mathrm{LN}\left(3600^{\star f}\right)\right)\right)^{\wedge}(1 / 2)+0.577 /\left(2^{*} \mathrm{LN}\left(3600^{\star f}\right)\right)^{\wedge}(1 / 2), \text { Eq. } 6-9 \\
\mathrm{Q} & =0.894 & =\left(1 /\left(1+0.63^{*}((\mathrm{~B}+\mathrm{h}) / \mathrm{Lz}(\text { bar }))^{\wedge} 0.63\right)\right)^{\wedge}(1 / 2), \text { Eq. } 6-6
\end{array}
\end{aligned}
$$

2: Calculation of G for Rigid Structure

$$
\mathrm{G}=0.864=0.925^{*}\left(\left(1+1.7^{*} \mathrm{gq}{ }^{*} \mathrm{Iz}(\text { bar })^{*} \mathrm{Q}\right) /\left(1+1.7^{*} \mathrm{~g} v^{*} \mathrm{Iz}(\text { bar })\right)\right) \text {, Eq. 6-4 }
$$

3: Calculation of Gf for Flexible Structure

β	0.010	Damping Ratio
di $=$	3.9375	= D-(2*t/12), ft. (Inside diameter or clear inside dimension between flats.)
$\mathrm{I}=$	0.767	$=0.0491^{*}\left(\mathrm{D}^{\wedge} 4-\mathrm{di}\right.$ ^4), $\mathrm{ft}^{\wedge} 4$
$\mathrm{m}=$	0.0059	kip-sec^2/ft^2, m = 0.7854*($\mathrm{D}^{\wedge} 2-\mathrm{di}$ ^2)* ${ }^{*} \mathrm{t} / \mathrm{g}$
$\mathrm{f}=$	2.034	$\mathrm{Hz} ., \mathrm{f}=0.56 / \mathrm{h}^{\wedge} 2^{*} \mathrm{SQRT}\left(\mathrm{E}^{*} / / \mathrm{m}\right.$) (from ASCE 7-05 Ch. C6, Eqn. C6-22a, page 294)
$\mathrm{T}=$	0.492	$=1 / \mathrm{f}$, sec. (fundamental period)
$V(\mathrm{fps})=$	N.A.	$=\mathrm{V}(\mathrm{mph})^{*}(88 / 60)$, ft //sec.
$V(\mathrm{bar}, \mathrm{zbar})=$	N.A.	$=\mathrm{b}(\mathrm{bar})^{*}(z(\mathrm{bar}) / 33)^{\wedge}(\alpha(\mathrm{bar}))^{*} \mathrm{~V}^{*}(88 / 60)$, ft./sec. , Eq. 6-14
N1 =	N.A.	$=f^{*} \mathrm{Lz}(\mathrm{bar}) /(\mathrm{V}(\mathrm{bar}, \mathrm{zbar})), \mathrm{Eq} .6-12$
$\mathrm{Rn}=$	N.A.	$=7.47^{*} \mathrm{~N} 1 /\left(1+10.3^{*} \mathrm{~N} 1\right)^{\wedge}(5 / 3)$, Eq. 6-11

$\eta \mathrm{h}=$	N.A.	= 4.6*f*h/(V(bar,zbar))
$\mathrm{Rh}=$	N.A.	$=(1 / \eta h)-1 /\left(2^{*} \eta h^{\wedge} 2\right)^{*}\left(1-e^{\wedge}\left(-2^{*} \eta h\right)\right)$ for η h >0, or $=1$ for η h $=0$, Eq. 6-13a,b
$\eta \mathrm{b}=$	N.A.	$=4.6 * * * \mathrm{D} /(\mathrm{V}(\mathrm{bar}, \mathrm{zbar}))$
$\mathrm{RB}=$	N.A.	$=(1 / \eta b)-1 /\left(2^{*} \eta b^{\wedge} 2\right)^{*}\left(1-e^{\wedge}\left(-2^{*} \eta b\right)\right)$ for $\eta b>0$, or $=1$ for $\eta b=0$, Eq. 6-13a, b
$\eta \mathrm{d}=$	N.A.	$=15.4 *$ * $\left.{ }^{\text {D } /(V(b a r, z b a r) ~}\right)$
$\mathrm{RL}=$	N.A.	$=(1 / \eta d)-1 /\left(2^{*} \eta d^{\wedge} 2\right)^{*}\left(1-e^{\wedge}\left(-2^{*} \eta d\right)\right)$ for $\eta d>0$, or $=1$ for $\eta d=0$, Eq. 6-13a,b
$\mathrm{R}=$	N.A.	$=\left((1 / \beta) * R n^{*} R^{*} R B^{*}\left(0.53+0.47^{*} R L\right)\right)^{\wedge}(1 / 2)$, Eq. 6-10
$\mathrm{Gf}=$	N.A.	$=0.925^{*}\left(1+1.7^{*} \mathrm{Iz}(\mathrm{bar})^{*}\left(\mathrm{gq}{ }^{\wedge} 2^{*} \mathrm{Q}^{\wedge} 2+\mathrm{gr}{ }^{\wedge} 2^{*} \mathrm{R}^{\wedge} 2\right)^{\wedge}(1 / 2)\right) /\left(1+1.7^{*} \mathrm{gv} \mathrm{V}^{*} \mathrm{z}(\mathrm{bar})\right)$, Eq. 6-8
Use: G =	0.850	

Force Coefficients for Chimneys, Tanks, and Similar Structures, Cf (Figure 6-21):

Cross-Section	Type of Surface	Cf for h/D Values of:		
		1	7	25
Square (wind normal to face)	All	1.3	1.4	2.0
Square (wind along diagonal)	All	1.0	1.1	1.5
Hexagonal or Octagonal	All	1.0	1.2	1.4
Round (D*SQRT(qz)>2.5)	1-Moderately Smooth	0.5	0.6	0.7
	2-Rough (D'D=0.02)	0.7	0.8	0.9
	3-Very Rough ($\left.D^{\prime} / D=0.08\right)$	0.8	1.0	1.2
Round (D*SQRT(qz)<=2.5)	4-All	0.7	0.8	1.2

Wind Direction $=$	Normal	(applicable for square cross-section only)
$\mathrm{D}^{\prime}=$	1.000	ft . (depth of protruding elements)
$\mathrm{D}^{\prime} / \mathrm{D}=$	0.250	
Type Round Surface =	3	Very Rough
h/D =	20.000	
$D * S Q R T(q z)=$	15.98	> 2.5
$\mathrm{Cf}=$	1.144	(interpolated Force Coefficient from Figure 6-21 above)

Note: if applicable, user may input above value of 'Cf' into cell B21.

