

Input Data:

Note: Per Code Section 6.1.4.1, design wind force for open buildings and other structures shall not be less than 10 psf multiplied by the area, 'Af', the area normal to wind direction.

Resulting Parameters and Coefficients:

If $z<15$ then: $K z=2.01^{*}(15 / \mathrm{zg})^{\wedge}(2 / \alpha)$ If $z>=15$ then: $K z=2.01^{*}(z / z g)^{\wedge}(2 / \alpha)$

$\alpha=$	9.50	(Table 6-2)
zg $=$	900	(Table 6-2)
$\mathrm{I}=$	1.00	(Table 6-1)
freq., $f=$	1.337	Hz. ($f>=1$) Rigid
$\mathrm{G}=$	0.850	(Gust Factor, Sect. 6.5.8)

Velocity Pressure (Sect. 6.5.10, Eq. 6-15):
$\mathrm{qz}=0.00256^{*} \mathrm{Kz}^{*} \mathrm{Kzt} \mathrm{K}^{*} \mathrm{Kd}^{*} \mathrm{~V}^{\wedge} 2^{*} \mathrm{I}$
Net Design Wind Pressures (Sect. 6.5.15):
$p=q z^{*} G^{*} C f$ ($p s f$), where ' $q z^{\prime}$ is evaluated at height ' z ' of the centroid of projected area.

Determination of Gust Effect Factor, G:

Flexible? No $\mathrm{f}>=1 \mathrm{~Hz}$.
1: Simplified Method for Rigid Structure
\square

Parameters Used in Both Item \#2 and Item \#3 Calculations (from Table 6-2):

$\alpha^{\wedge}=$	0.105
$\mathrm{b}^{\wedge}=$	1.00
$\alpha(\mathrm{bar})=$	0.154
$\mathrm{b}(\mathrm{bar})=$	0.65
C =	0.20
$1=$	500
$\varepsilon($ bar $)=$	0.200
$z(\min)=$	15

Calculated Parameters Used in Both Rigid and/or Flexible Structure Calculations:

$$
\begin{aligned}
& z(\text { bar })=75.00=0.6^{*} \mathrm{~h} \text {, but not }<\mathrm{z}(\mathrm{~min}), \mathrm{ft} \text {. } \\
& \mathrm{Iz}(\text { bar })=0.174=\mathrm{c}^{*}(33 / \mathrm{z}(\text { bar }))^{\wedge}(1 / 6) \text {, Eq. 6-5 } \\
& \mathrm{Lz}(\text { bar })=589.22=I^{*}(\mathrm{z}(\mathrm{bar}) / 33)^{\wedge}(\varepsilon(\text { bar })) \text {, Eq. 6-7 } \\
& \mathrm{gq}=\quad 3.4 \text { (3.4, per Sect. 6.5.8.1) } \\
& \mathrm{gv}=3.4 \text { (3.4, per Sect. 6.5.8.1) } \\
& \mathrm{gr}=4.258=\left(2^{*}\left(\mathrm{LN}\left(3600^{*} \mathrm{f}\right)\right)\right)^{\wedge}(1 / 2)+0.577 /\left(2^{*} \mathrm{LN}\left(3600^{*} \mathrm{f}\right)\right)^{\wedge}(1 / 2) \text {, Eq. 6-9 } \\
& Q=0.848=\left(1 /\left(1+0.63^{*}((B+h) / L z(\text { bar }))^{\wedge} 0.63\right)\right)^{\wedge}(1 / 2) \text {, Eq. 6-6 }
\end{aligned}
$$

2: Calculation of G for Rigid Structure

$$
\mathrm{G}=0.855=0.925^{*}\left(\left(1+1.7^{*} \mathrm{gq}{ }^{*} \mathrm{Iz}(\mathrm{bar})^{*} \mathrm{Q}\right) /\left(1+1.7^{*} \mathrm{gv} \mathrm{v}^{*} \mathrm{Iz}(\text { bar })\right)\right) \text {, Eq. 6-4 }
$$

3: Calculation of Gf for Flexible Structure

$\beta=$	0.010	Damping Ratio
$\mathrm{Ct}=$	0.020	Period Coefficient
T =	0.748	$=\mathrm{Ct}^{*} \mathrm{~h}^{\wedge}(3 / 4)$, sec. (Period)
$\mathrm{f}=$	1.337	= 1/T, Hz. (Natural Frequency)
$\mathrm{V}(\mathrm{fps})=$	N.A.	$=\mathrm{V}(\mathrm{mph}) *(88 / 60)$, ft./sec.
V (bar,zbar) $=$	N.A.	$=\mathrm{b}(\mathrm{bar})^{*}(\mathrm{z}(\mathrm{bar}) / 33)^{\wedge}(\alpha \text { (bar) })^{*} \mathrm{~V}^{*}(88 / 60)$, ft./sec. , Eq. 6-14
N1 =	N.A.	$=\mathrm{f}^{*} \mathrm{Lz}$ (bar)/(V(bar,zbar)) , Eq. 6-12
$\mathrm{Rn}=$	N.A.	$=7.47 * N 1 /(1+10.3 * N 1)^{\wedge}(5 / 3)$, Eq. 6-11
$\eta \mathrm{h}=$	N.A.	$=4.6 * f * h /(V(b a r, z b a r))$
$\mathrm{Rh}=$	N.A.	$=(1 / \eta h)-1 /\left(2^{*} \eta h^{\wedge} 2\right)^{*}\left(1-e^{\wedge}\left(-2^{*} \eta h\right)\right)$ for η h > 0 , or $=1$ for η h $=0$, Eq. 6-13a,b
$\eta \mathrm{b}=$	N.A.	$=4.6 * f * B /(\mathrm{V}(\mathrm{bar}, \mathrm{zbar}))$

$\mathrm{RB}=$	N.A.	$=(1 / \eta b)-1 /\left(2^{*} \eta b^{\wedge} 2\right)^{*}\left(1-e^{\wedge}\left(-2^{*} \eta b\right)\right)$ for $\eta b>0$, or $=1$ for $\eta b=0$, Eq. $6-13 a, b$
$\eta \mathrm{d}=$	N.A.	$=15.4 * f *$ L/(V(bar,zbar)
$\mathrm{RL}=$	N.A.	$=(1 / \eta d)-1 /\left(2^{*} \eta d^{\wedge} 2\right)^{*}\left(1-e^{\wedge}\left(-2^{*} \eta d\right)\right)$ for $\eta d>0$, or $=1$ for $\eta d=0$, Eq. 6-13a,b
$\mathrm{R}=$	N.A.	$\left.=((1 / \beta))^{*} n^{*} R^{*} R^{*}\left(0.53+0.47^{*} R L\right)\right)^{\wedge}(1 / 2)$, Eq. 6-10
$\mathrm{Gf}=$	N.A.	$=0.925^{*}\left(1+1.7^{*} \mathrm{Iz}(\mathrm{bar})^{*}\left(\mathrm{gq}{ }^{\wedge} 2^{*} \mathrm{Q}^{\wedge} 2+\mathrm{gr}{ }^{\wedge} 2^{*} \mathrm{R}^{\wedge} 2\right)^{\wedge}(1 / 2)\right) /\left(1+1.7^{*} \mathrm{~g} v^{*} \mathrm{Iz}(\mathrm{bar})\right)$, Eq. 6-8
Use: G =	0.850	

Other Structures - Method 2		All Heights	
Figure 6-22	Force Coefficients Cf	 Lattice Frameworks	
ε	Flat-Sided Members	Rounded Members	
	2.0		0.8
0.1	1.8	1.3	0.9
0.1 to 0.29	1.6	1.5	1.1

Notes: 1. Signs with openings comprising 30% or more of the gross area are classified as open signs.
2. The calculation of the design wind forces shall be based on the area of all exposed members and elements projected on a plane normal to the wind direction. Forces shall be assumed to act parallel to the wind direction.
3. The area 'Af' consistent with these force coefficients is the solid area projected normal to the wind direction.
4. Notation:
$\varepsilon=$ ratio of solid area to gross area
$D=$ diameter of a typical round member, in feet.
$q z=$ velocity pressure evaluated at height 'z' above ground in psf.

Other Structures - Method 2		All Heights
Figure 6-23	Force Coefficients Cf	Trussed Towers
Open Structures		
Tower Cross Section		Cf

Square	$4.0^{\star} \varepsilon^{\wedge} 2-5.9^{*} \varepsilon+4.0$
Triangle	$3.4^{\star} \varepsilon^{\wedge} 2-4.7^{*} \varepsilon+3.4$

Notes: 1. For all wind directions considered, area 'Af' consistent with force coefficients shall be solid area of tower face projected on plane of that face for tower segment under consideration.
2. Specified force coefficients are for towers with structural angles or similar flat-sided members.
3. For towers containing rounded member, it is acceptable to multiply specified force coefficients by following factor when determining wind forces on such members: $0.51^{*} \varepsilon^{\wedge} 2+0.57<=1.0$.
4. Wind forces shall be applied in directions resulting in maximum member forces and reactions. For towers with square cross-sections, wind forces shall be multiplied by following factor when wind is directed along a tower diagonal: $1+0.75^{*} \varepsilon<=1.2$.
5. Wind forces on tower appurtenances such as ladder, conduits, lights, elevators, etc., shall be calculated using appropriate force coefficients for these elements.
6. Notation: $\varepsilon=$ ratio of solid area to gross area of one tower face for segment considered.

Note: this worksheet DOES NOT address open structures with roofs!

Note: User is to input applicable values of Cf in table at left. Use force coefficients, Cf, from Figures 6-22 and 6-23.

User Input for Height, z (ft.):

| N |
| :---: | :---: |
| |
| |
| |
| |
| |

For Flat Sided Members from Figure 6-22:

Solid Area =	6250.00	ft.^2	
Gross Area =	12500.00	ft.^2	
Solidity Ratio, e =	0.500		$\varepsilon=$ Solid Area/Gross Area
Cf =	1.6		Cf from Figure 6-22

For Roun	Mem	fr	6-22:
D =	10.000	ft .	
qz $=$	25.00	psf	
Solid Area $=$	6250.00	ft.^2	
Gross Area $=$	12500.00	ft ^2	
Solidity Ratio, e =	0.500		$\varepsilon=$ Solid Area/Gross Area
D*SQRT (qz) =	50.00		
$\mathrm{Cf}=$	N.A.		Cf for D*SQRT(qz) < 2.5
Cf $=$	1.1		Cf for D*SQRT(qz) > 2.5
Use: $\mathrm{Cf}=$	1.1		Cf from Figure 6-22

Solid Area $=$	6250.00	ft.^2	
Gross Area $=$	12500.00	ft.^2	
Solidity Ratio, $\varepsilon=$	0.500		$\varepsilon=$ Solid Area/Gross Area
Square Tower $\mathrm{Cf}=$	2.05		$\mathrm{Cf}=4.0^{*} \varepsilon^{\wedge} 2-5.9{ }^{*} \varepsilon+4.0$
Triangle Tower $\mathrm{Cf}=$	1.90		$\mathrm{Cf}=3.4^{*} \varepsilon^{\wedge} 2-4.7^{*} \varepsilon+3.4$

