Bolt Torque Required for Sealing Flanges with Gaskets Calculator		
Blocks shown as light blue are editable		
external bending moment, $\mathrm{M}=$	15.000	in.-Ib
diameter at location of gasket load reaction, G =	6.000	in
test pressure, $\mathrm{P}_{\mathrm{r}}=$	450.000	psi
internal pressure, $\mathrm{P}=$	90.000	psi
effective gasket seating diameter width, $\mathrm{b}=$	3.0000	in
gasket factor, m =	1.0000	-
gasket unit seating load, $\mathrm{y}=$	35.0000	psi
cross-sectional area of bolts, $\mathrm{A}_{\mathrm{b}}=$	1.1800	i^{2}
modulus of elasticity of bolting material at temperature, $E_{b}=$	65000.00	psi
thickness of gasket, $\mathrm{t}_{\mathrm{g}}=$	0.0800	in
modulus of elasticity of gasket material at temperature, $\mathrm{E}_{\mathrm{g}}=$	26.00	psi
effective length of bolt, mid nut to mid nut, $\mathrm{l}_{\mathrm{b}}=$	1.0000	in
Total friction factor between bolt/nut and nut/ flange face, $\mathrm{K}=$	0.2500	-
Diameter of bolt/fastener $\mathrm{D}=$	0.5000	in
pitch diameter of threads, $\mathrm{d}_{\mathrm{m}}=$	0.4485	in
number of bolts, $\mathrm{n}=$	6	\#
Results		
Eq. 1, Equivalent Pressure $\mathrm{P}_{\mathrm{c}}=$	106.269	lb
Eq. 2, Hydrostatic end force $\mathrm{H}=$	3004.690	lb
Eq. 3, Total joint-contact-surface compression load $\mathrm{H}_{\mathrm{p}}=$	12018.760	lb
Eq. 4, Minimum required bolt load for gasket seating $\mathrm{W}_{\mathrm{m} 2}=$	1979.203	lb
Eq. 5, Actual joint area contact for gasket $\mathrm{A}_{\mathrm{g}}=$	113.097	in^{2}
Eq. 6, Decreasing compression force in gasket $\Delta \mathrm{F}=$	973.432	lb
Eq. 7, Initial required tightening force (tension) $\mathrm{F}_{\mathrm{bo}}=$	12992.192	lb
Eq. 8, Total tightening force required to seal joint, $\mathrm{W}=$	12992.192	lb
Eq. 9, Required torque $\mathrm{T}=$	20.233	$\mathrm{lb}-\mathrm{ft}$

