Related Resources: instrumentation

Carbon Monoxide Sensor Detector Review

Instrumentation Electronics Devices and Applications

A carbon monoxide sensor or CO detector is a device that detects the presence of the carbon monoxide (CO) gas in order to prevent carbon monoxide poisoning. CO is a colorless and odorless compound produced by incomplete combustion. It is often referred to as the "silent killer" because it is virtually undetectable without using detection technology. Elevated levels of CO can be dangerous to humans depending on the amount present and length of exposure. Smaller concentrations can be harmful over longer periods of time while increasing concentrations require diminishing exposure times to be harmful.

CO Sensors/detectors are designed to measure CO levels over time and sound an alarm before dangerous levels of CO accumulate in an environment, giving people adequate warning to safely ventilate the area or evacuate. Some system-connected detectors also alert a monitoring service that can dispatch emergency services if necessary.

While CO detectors do not serve as smoke detectors and vice versa, dual smoke/CO detectors are also sold. Smoke detectors detect the smoke generated by flaming or smoldering fires, whereas CO detectors detect and warn people about dangerous CO buildup caused, for example, by a malfunctioning fuel-burning device. In the home, some common sources of CO include open flames, space heaters, water heaters, blocked chimneys or running a car inside a garage.

Carbon Monoxide CO Sensors:

Early designs were basically a white pad which would fade to a brownish or blackish color if carbon monoxide was present. Such chemical detectors were cheap and were widely available, but only give a visual warning of a problem. As carbon monoxide related deaths increased during the 1990s, audible alarms became standard.

The alarm points on carbon monoxide detectors are not a simple alarm level (as in smoke detectors) but are a concentration-time function. At lower concentrations (e.g. 100 parts per million) the detector will not sound an alarm for many tens of minutes. At 400 parts per million (PPM), the alarm will sound within a few minutes. This concentration-time function is intended to mimic the uptake of carbon monoxide in the body while also preventing false alarms due to relatively common sources of carbon monoxide such as cigarette smoke.

There are four types of sensors available and they vary in cost, accuracy and speed of response, listed below. The latter three types include sensor elements that typically last up to 10 years. At least one CO detector is available which includes a battery and sensor in a replaceable module. Most CO detectors do not have replaceable sensors.

Opto-Chemical CO Sensors:

The detector consists of a pad of a coloured chemical which changes colour upon reaction with carbon monoxide. They only provide a qualitative warning of the gas however. The main advantage of these detectors is that they are the lowest cost, but the downside is that they also offer the lowest level of protection.

Biomimetic CO Sensors:

A biomimetic (Biotechnology based sensor using cyclodetrins and a chromophore and a number of metal salts) sensor works in a fashion similar to hemoglobin which darkens in the presence of CO proportional to the amount of carbon monoxide in the surrounding environment. This can either be seen directly or connected to a an infrared source of photons such as an IR LED and then monitored using a photodiode. Battery lifespan usually lasts 2–3 years with conventional alkaline, but a lithium battery will last the life of the product. The biotechnology based sensors have a useful operational life of 6 years. These products were the first to enter the mass market, but because they cost more than other sensors they are mostly used in higher-end areas and RVs. The technology has been improved and is the most reliable technology, according to a report from Lawrence Berkeley National Laboratory (LBNL Report 40566). The technology is the only one tested false alarm free and is preferred by those with larger facilties like hospitals, hotels and apartments that use air fresheners, alcohols and other disinfectants where the cost of one false alarm is very high. This technology was invented in the USA and is manufactured in California.

Electrochemical CO Sensors:

This is a type of fuel cell that instead of being designed to produce power, is designed to produce a current that is precisely related to the amount of the target gas (in this case carbon monoxide) in the atmosphere. Measurement of the current gives a measure of the concentration of carbon monoxide in the atmosphere. Essentially the electrochemical cell consists of a container, 2 electrodes, connection wires and an electrolyte - typically sulfuric acid. Carbon monoxide is oxidized at one electrode to carbon dioxide while oxygen is consumed at the other electrode. For carbon monoxide detection, the electrochemical cell has advantages over other technologies in that it has a highly accurate and linear output to carbon monoxide concentration, requires minimal power as it is operated at room temperature, and has a long lifetime (typically commercial available cells now have lifetimes of 5 years or greater). Until recently, the cost of these cells and concerns about their long term reliability had limited uptake of this technology in the marketplace, although these concerns are now largely overcome. This technology is now the dominant technology in USA and Europe.

Semiconductor CO Detector:

Thin wires of the semiconductor tin dioxide on an insulating ceramic base provide a sensor monitored by an integrated circuit. This sensing element needs to be heated to approximately 400 deg C in order to operate. Oxygen increases resistance of the tin dioxide, but carbon monoxide reduces resistance therefore by measurement of the resistance of the sensing element means a monitor can be made to trigger an alarm. The power demands of this sensor means that these devices can only be mains powered although a pulsed sensor is now available that has a limited lifetime (months) as a battery powered detector. Device usually lasts on the average of 5–10 years. This technology has traditionally found high utility in Japan and the far east with some market penetration in USA. However the superior performance of electrochemical cell technology is beginning to displace this technology.
 
Modified from materials provided by Wikipedia