Design for Machining
Design for Manufacturability

Edited by:
Kelly Bramble (Engineers Edge), et al. Frank Sattler (Schlumberger), Mike Heath (Schlumberger), Jason Jonas (Schlumberger), Alain Dorel (Schlumberger), Alan Schroder (SLB), Kevin Forst (Lockheed Martin), Diane Matthews (Lockheed Martin), Ken Kendrick, K.J Kendrick Associates.

The following documents have been used as reference material (cited and not cited).

Engineers Edge, Solutions by Design, 2000 – 2014
Machinery’s Handbook, 23rd Edition
Kents Mechanical Engineers Handbook, Twelfth Edition
Eshback, Handbook of Engineering
Design for Manufacturability & Concurrent Engineering, Dr. David M. Anderson
Nonferrous Metals, Reynolds Metals Company, Michael H, Skillingberg
Design for Excellence, James G. Bralla, 1996
Chipless Machining, Charles Wick, 1960
Impact and Cold Extrusion of Metals, John L. Everhart, P. E. Metallurgical Engineer
Broaching Fundamentals, General Broach Company, Morenci, MI
American Machinist, Dressing for Grinding Success, Charles Bates, 2006
Finish Hard Machining; Surface Integrity and Fatigue Life, C. Richard Liu, PHD
Superconducting Supercollider Laboratory, Universities Research Association (URA), Design Specifications
Fermi National Accelerator Laboratory Design and Manufacturing Standards Handbook
Department of Defense – Designing and Developing Maintainable Products and System (MIL-HDBK-470A)
Department of Defense – Electronic Design Handbook (MIL-HDBK-338B)
David Hardt, Laboratory for Manufacturing and Productivity, MIT

Revision AC
Preface

This book is directed primarily toward engineers who design and manufacture machinery, appliances, mechanical equipment, and other engineered products.

The presentation of each subject and concept attempts to give the engineer or designer a quick grasp of the essentials of the field, together with pertinent technical data and concepts in a condensed form. The data consists of; basic descriptions of manufacturing processes; Design Guidelines: mechanical tolerance where applicable; working charts; illustrations; and engineering culture and business overview.

This book is not intended to be a comprehensive manufacturing guide or reference book. References throughout the book suggest that the design engineer consult with cognizant manufacturing personnel for all manufacturing related design criteria and guidance.
Table of Contents

Volume I

Preface

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction, Chapter 1</td>
<td></td>
</tr>
<tr>
<td>What is DFM & DFA?</td>
<td>1.15</td>
</tr>
<tr>
<td>Culture-nomics</td>
<td>1.16</td>
</tr>
<tr>
<td>The Cost Estimate</td>
<td>1.25</td>
</tr>
<tr>
<td>Product Lifecycle</td>
<td>1.30</td>
</tr>
<tr>
<td>Engineering and Design Approach</td>
<td>1.33</td>
</tr>
<tr>
<td>Concurrent Engineering</td>
<td>1.39</td>
</tr>
<tr>
<td>Set-Based Concurrent Engineering</td>
<td>1.41</td>
</tr>
<tr>
<td>Design for Manufacturability & Computer Technology</td>
<td>1.43</td>
</tr>
<tr>
<td>Major Manufacturing Paradigms</td>
<td>1.45</td>
</tr>
<tr>
<td>Manufacturing Process Selection</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Manufacturing Operations/Procedure, Chapter 2

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing Routing Operations</td>
<td>2.1</td>
</tr>
<tr>
<td>CNC (Computer Numerical Control)</td>
<td>2.2</td>
</tr>
<tr>
<td>Three Axis CNC Machining</td>
<td>2.3</td>
</tr>
<tr>
<td>Five Axis Machining</td>
<td>2.3</td>
</tr>
<tr>
<td>CNC Coordinate Axis INTEGREX e-650 II</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Mechanical Dimensions and Tolerances Overview, Chapter 3

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing’s Ability To Fabricate Part or Features</td>
<td>3.1</td>
</tr>
<tr>
<td>Assigning Excessively Tight Tolerances</td>
<td>3.2</td>
</tr>
<tr>
<td>Cost vs. Process chart</td>
<td>3.4</td>
</tr>
<tr>
<td>Mechanical Tolerance Charts</td>
<td>3.6</td>
</tr>
<tr>
<td>Surface Quality – Texture Roughness</td>
<td>3.5</td>
</tr>
<tr>
<td>ANSI Standard Tolerances ANSI B4.1-1967 (R1987)</td>
<td>3.6</td>
</tr>
<tr>
<td>British Standard Tolerances BS 4500:1969</td>
<td>3.18</td>
</tr>
<tr>
<td>General Tolerances per. ISO 2768</td>
<td>3.26</td>
</tr>
</tbody>
</table>

Cleaning Processes, Design for Coatings & Plating’s, Chapter 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale and Rust</td>
<td>4.1</td>
</tr>
<tr>
<td>Common Cleaning Operations</td>
<td>4.2</td>
</tr>
<tr>
<td>Design for Coatings and Plating’s Overview</td>
<td>4.2</td>
</tr>
<tr>
<td>Categories of Coatings</td>
<td>4.2</td>
</tr>
<tr>
<td>Selected Coatings and Plating Methods</td>
<td>4.3</td>
</tr>
<tr>
<td>General Design Guidelines</td>
<td>4.8</td>
</tr>
</tbody>
</table>
Table of Contents

Design for Marking and Identification, Chapter 5
 Marking Methods Overview 5.1
 Design Guidelines 5.3

Materials and Machinability, Chapter 6
 Materials overview 6.1
 Industry Standard Machinability Chart 6.2
 Machinability – Carbon and Alloy Steel 6.3
 Machinability – Stainless, Tool Steels, Grey Cast Iron 6.4
 Machinability – Iron, Aluminum, Magnesium Alloys 6.5
 Materials and Machinability – Energy Industry 6.6
 Industry Typical Materials, Ferrous and Non-Ferrous 6.7

Design for Machining – General, Chapter 7
 General Machining Design Guidelines 7.1
 Milling Manufacturing 7.3
 Cutting Tool Construction 7.4
 Insert Cutters 7.5
 Milling Design Guidelines 7.7
 Radii Design 7.8
 Tool Stiffness 7.9
 Rib and Flange Design 7.10
 Clevis Design – Machine Allowance 7.10
 Tolerances 7.11
 Tolerances for Machined Tapers 7.12

Sawing and Cutoff Machines, Chapter 8
 Design Guidelines 8.1
 Tolerances 8.2

Turning – Lathes, Chapter 9
 Turning – General 9.1
 Insert Cutters 9.2
 Design Guidelines 9.3
 Tolerances 9.4
Table of Contents

Drilling and Reaming Hole Machines & Design, Chapter 10
- General
- Design Guidelines 10.1
- Types of Drilling Tools 10.3
- Tolerances 10.4

Boring Manufacturing, Chapter 11
- Design Guidelines 11.1
- Tolerances 11.2

Honing Manufacturing, Chapter 12
- General 12.1
- Design Guidelines 12.1
- Tolerances 12.2

Trepanning, Gun Drilling, STS Machining, Chapter 13
- Trepanning General 13.1
- Design Guidelines 13.1
- Tolerances 13.2
- Gun Drilling / Reaming 13.3
- Design Guidelines 13.4
- Tolerances 13.5
- Ejector Drilling 13.6
- Single Tube System (STS) Drilling 13.7

Threading (Screw Threads) , Chapter 14
- Threading 14.1
- Thread Manufacturing 14.2
- Thread Grinding 14.3
- Thread Rolling 14.3
- Design Guidelines 14.3
- Thread Tolerances Overview 14.5
- Thread Location Tolerances 14.6
- Thread Design Illustrations 14.7
- ACME Threads 14.8
- General Purpose ACME Threads 14.8
- American Standard ACME Threads 14.8
Table of Contents

Stub Acme 14.8
Modified Square Threads 14.9
Acme Thread Abbreviations 14.10
Design Guidelines 14.10
Tolerances 14.11
ACME Thread Relief 14.11
Tapered Pipe Threads 14.12
Buttress Threads 14.14
Design Guidelines 14.14
Tolerances 14.15

Hobbing – Overview, Chapter 15
Hobbing General 15.1
Mechanical Tolerances 15.2

Broaching, Chapter 16
Broaching General 16.1
Design Guidelines 16.2
Blind Hole Broaching 16.3
Tolerances 16.4

Surface Grinding, Chapter 17
Surface Grinding Process 17.1
Flat Ground Surfaces 17.2
Design Guidelines 17.3
Tolerances 17.4
Tooling Only Tolerances 17.4
Center-Type Grinding 17.5
Design Guidelines 17.5
Tolerances 17.6
Centerless Grinding (Ground) 17.7
Design Guidelines 17.8
Tolerances 17.8

EDM (Electrical Discharge Machining), Chapter 18
EDM General and Requirements 18.1
Design Guidelines 18.3
Tolerances 18.4
Table of Contents

Castings Manufacturing, Chapter 19
- Sand Casting Process Overview 19.1
- Characteristics of Sand Cast Parts 19.1
- Green-Sand Casting 19.2
- Dry-Sand Casting 19.2
- Cold-Cure Casting 19.2
- Shell Molding Casting 19.2
- Lost Foam Molding Casting 19.3
- Design Guidelines 19.3
- Geometry Design Recommendations 19.6
- Tolerances 19.7
- Dimensioning and Tolerancing 19.8
- Investment Casting 19.9
- Design Guidelines 19.10
- Tolerances 19.11
- Die Casting 19.12
- Die Casting Alloys 19.13
- Die Design 19.13
- Design Guidelines 19.14
- Tolerances 19.16

Forging, Chapter 20
- Forging Process overview 20.1
- Advantages and Disadvantages 20.1
- Grain Flow 20.2
- Forging Sequence 20.3
- Design Guidelines 20.4
- Dimensioning and Tolerances 20.7

Metal Extrusion Manufacturing, Chapter 21
- General 21.1
- Design Guidelines 21.2
- Tolerances 21.4
- Extrusion Materials 21.5
- Extrusion Circle 21.6
Table of Contents

Electroforming, Chapter 22
- General 22.1
- Design Guidelines 22.1
- Tolerances 22.2

Rapid Prototype, Chapter 23
- General 23.1
- Design Guidelines 23.10

Injection Molding Plastic, Chapter 24
- General 24.1
- Design Guidelines 24.2
- Snap Fits 24.9
- Molding and Designing Snap Fits 24.14
- Snap Fit Deflection Stress 24.17
- Post and Hub Press Fit Design 24.23
- Living Hinges Design 24.25
- Mechanical Tolerances 24.28
- Surface Finish Specifications 24.29
- Generic Design Check Sheet 24.31

Plastic Extrusion, Chapter 25
- General 25.1
- Overjacketing Extrusion 25.4
- Tubing Extrusion 25.5
- Coextrusion 25.5
- Extrusion Coating 25.5
- Compound Extrusion 25.6
- Design Guidelines 25.7
- Plastic Extrusion Materials 25.9
- Mechanical Tolerances 25.10
- Secondary Manufacturing Operations 25.10

Extrusion Blow Molding, Chapter 26
- General and Method 26.1
- Types of Blow Molding 26.2
- Design Considerations 26.4
Table of Contents

Plastic Vacuum Thermoform, Chapter 27
- General
- Manufacturing and Design
- Tolerances

Rubber Molding Manufacturing, Chapter 28
- Design Guidelines
- Materials

Laser Welding Plastics, Chapter 29
- General and Method
- Material Compatibility
- Contour, Simultaneous Welding
- Hybrid Welding
- Design Considerations

Volume II

Stamping and Forming – Sheet Metal, Chapter 30
- General
- Sheet Metal Terms & Definitions
- Design Guidelines
- Notch and Radii Feature Design Guidelines
- Cut-Outs, Chamfer Feature, etc. Guidelines
- Brake Forming Limitations, Spring Back, Tapered
- Relief Notches Design & Tolerances
- Aluminum alloy 5052 vs. 6061
- Minimum Straight Bends – Aluminum Alloys
- Minimum Curved Bends – Aluminum Alloys
- Minimum Straight Bends – Stainless Steel Alloys
- Minimum Curved Bends – Stainless Steel Alloys
- Structural Steel Plate Minimum Bend Radius
- Inconel, Haynes Stellite (Hasteloy) Min. Bend Radii
Table of Contents

Minimum Straight Bends – Stainless Steel Alloys 30.24
Minimum Straight Bends – Stainless Steel Alloys 30.27
Flange Design Recommendations 30.30
Stretch Flange Concave Widths 30.35
Flange Intersections and Bend Relief Design 30.37
Mounting Fastener Requirements on Corner Relief's 30.40
Flange Width Development for Locating Fasteners 30.41
Forming Methods, Dies, Punches Press-Brake Operations 30.42
Bend Allowance Calculations 30.44
Dimensioning and Tolerancing Practices Sheet Metal 30.46
Fine Blanking 30.55
Progressive Stamping – Sheet Metal 30.67
Deep Drawing 30.69
Design Guidelines 30.69
Tolerances 30.70

Spinning (Spun) Parts (Metal) Manufacturing, Chapter 31
General 31.1
Advantages and Disadvantages 31.1
Design Guidelines 31.2
Tolerances 31.3

Laser Cutting, Chapter 32
General Overview 32.1
Design Guidelines 32.2
Production Rates 32.3
Tolerances 32.3
Heat Area Zone (HAZ) 32.4
Cutting Speeds 32.5

Abrasive Water Jet Cutting, Chapter 33
General 33.1
Design Guidelines 33.2
Tolerances 33.3

Design for Adhesives, Chapter 34
Adhesives Advantages 34.1
Engineering and Design Considerations 34.2
Table of Contents

Design for Welding, Chapter 35
- General 35.1
- Analysis of Existing Designs 35.2
- Typical Welding Challenges 35.3
- Welding Cost Considerations 35.5
- Arc Welding 35.6
- Shielded Metal Arc Welding SMAW 35.7
- Gas Tungsten Arc Welding, GTAW, TIG 35.8
- Typical Weld Joints 35.9
- Welding Symbol Application 35.20
- Access for Welding 35.26
- Spot Welding 35.30
- Seam Welding 35.30
- Plasma Arc Welding 35.31
- Oxyacetylene Gas Welding 35.31
- Electron Beam Welding 35.32
- Friction Welding 35.34
- Laser Welding 35.35
- Materials 35.37
- General Design Guidelines 35.38
- Mechanical Tolerances 35.38
- Heat Affected Weld Zone (HAZ) 35.40
- Weldment Tooling and Positioning 35.42
- Design for Brazing 35.50
- Design for Soldering 35.60

Fixtures and Jigs - Design for Work Holding, Chapter 36
- General 36.1
- Assembly Work Holding 36.1
- Welding Fixtures 36.1
- Manufacturing Work Holding 36.3
- Manufacturing Work Holding Concepts 36.4

Design for Corrosion, Chapter 37
- General & Design Guidelines 37.1
Table of Contents

Inspection and Quality, Chapter 38
- General & Inspection during Design 38.1
- Six Sigma Concept 38.2
- Dimensional Gages and Instruments 38.9
- Profilometer 38.10
- Borescope 38.10
- Bore and ID Gages 38.11
- Thread Gages 38.12
- Coordinate Measurements Machines (CMM) 38.13
- Dye Penetrant Inspection 38.14
- Eddy Current Inspection Method for Metals 38.15
- Radiography (x-Ray) Inspection Method 38.16
- Magnetic Particle Inspection 38.17
- Ultrasonic Inspection Method 38.18
- Advantages and Disadvantages 38.19

Engineering Drawings and Manufacturing, Chapter 39
- General & Engineering Drawing Recommendations 39.1
- Critical Feature Drawing CFD 39.3

Computer Aided Design (CAD) and Manufacturing, Chapter 40
- Computer Aided Design CAD Review 40.1
- Types of CAD 40.2
- CAD Standards 40.4
- AEC Standards 40.4
- File Naming Conventions 40.6
- MCAD Standards 40.6
- CAD Model Recommendations 40.6

Design for Assembly, Chapter 41
- General and Goals 41.1
- Design Guidelines 41.2
- ESS 41.4
- Automating Feeding of Parts 41.14
Table of Contents

Assembly & Manufacturing Process Analysis, Chapter 42
- Methods For Evaluating DFA 42.1
- Comparison of Assembly Methods 42.3
- Disk Brake Assembly Analysis 41.4
- Comparison of Assembly Methods 42.7
- Manual Handling and Orientation of Parts 42.9
- Classifications System for Manual Handling 42.11
- Manual Handling Times Table 42.13
- Classifications System for Manual Insertion 42.15
- Manual Insertion Times Table 42.16
- Typical Door Knob 42.20
- Children’s Play Bench Analysis 42.22
- DFA Analysis Blank Chart 42.25
- Process Selection and Facility Layout 42.26
- Birth of Automotive Mass Production 42.29
- Optimizing an Assembly Line 42.31

Design for Maintainability, Chapter 43
- General & Design Guidelines 43.1

Reverse Engineering, Chapter 44
- Overview and Method 44.1

Appendix A
- Generic Part Manufacturability Check Sheet A.1
- ANSI Size Drills A.2
- ISO (Metric Size Drills) and Conversion to Inches A.3
- ANSI Screw Threads Sizes A.4
- ACME Thread Forms A.6
- Tape Pipe Threads A.10
- Industry Finish and Coating Specifications Reference A.12
- Sheetmetal Gage Sizes A.22
- Welding Electrodes A.23
What is DFM & DFA?

DFM/DFA is ultimately about designing individual components, assembly or processes to be more cost effective, better quality, and meeting schedule requirements. Utilizing proven DFM practices will ensure quality, reduce delivery lead-times and provide a reduction in the product cost. In this day of overbearing global competition where cost, quality and speed to market are the key to a successful product and organization, we often fall victim to simple mistakes that are costly to our organization and our customers that could have been easily corrected during the design phase.

DFM/DFA is also about business culture and practices. Designing the perfect part and assembly is an ultimate goal, however a business environment that fails to execute optimally can be much more costly.

There is not a "one size for all" or one approach to DFM/DFA within industry verticals or organizations. Volume, end-item costing, competitive business environment, industry, end-item complexity, product scope are just a few of the variables that may change the formulae for an organizations DFM/DFA utilization.

- Lower end-product costs.
- Reduced development costs (NRE).
- Smoother transition to production manufacturing.
- Reduced part count.
- Simplified Assemblies.
- Higher Quality.
- Shorter design and development cycle.
- Greater product and process reliability.
- Lower service and maintenance costs.
- Reduction in manufacturing lead time.
- Fewer schedules slips.
- Ability to use common parts - economies of scale.
- Faster prototype and/or first article.
- Reduced errors in fabrication and assembly resulting in fewer engineering change notices.
- More suppliers capable of producing outsourced components and assemblies.
- Improved vertical or industry competitiveness.
- Improved design-manufacturing communication (concurrent engineering).
- Promotes teamwork.
- Improved ownership throughout organization.
Culture-nomics

Culture-nomics is my word to describe the industrial-cultural differences between the major manufacturing countries throughout the world. As a GD&T, DFM/DFMA trainer and consultant I have seen first hand the differences in how organizational and cultural approaches in engineering, design, manufacturing and quality effects an organizations competitive position in their perspective market. These differences, coupled with national and political ambitions ultimately shape how an well an organization competes within their local and the world market.

International Management Strategies
The 20th century witnessed the development of manufacturing strategies typical to certain continents, countries, and even some specific regions within federalist countries. Current multinational companies, however, must develop manufacturing strategies tailored to local markets as well as have an overall business strategy to compete globally. Prior to a brief review of several key economic engines in the world, it would be appropriate to define manufacturing strategy as a plan to design, produce, and market a well engineered product with a long-range vision. Competitive priorities in this context can be identified as quality (highest ranked), service, cost, delivery, and product variety. Thus a comprehensive strategy would require design and manufacture of a superior product (backed by an excellent service team) produced at lower costs than the competitor’s and delivered in a timely manner.