Restrained Rectangle in Frame, Uniformly Heated Stress Calculator

Width plate, $\mathrm{a}=$	20.000	in v
Height plate, $\mathrm{b}=$	18.000	in
thickness plate, $\mathrm{t}=$	0.500	in
thickness plate, $\mathrm{t}_{2}=$	0.625	in
thickness plate, $\mathrm{t}_{3}=$	0.625	in
Frame width, w =	1.500	in
Frame width, $\mathrm{v}=$	1.500	in
Modulus of elasticity plate $1, \mathrm{E}_{1}=$	$3.900 \mathrm{e}+004$	psi
Modulus of elasticity frame plate 2, $\mathrm{E}_{2}=$	$3.900 \mathrm{e}+004$	psi
Modulus of elasticity frame plate $3, \mathrm{E}_{3}=$	$3.900 \mathrm{e}+004$	psi
coefficient of thermal expansion, $\alpha_{1}=$	5E-06.000000	in $/{ }^{\circ} \mathrm{F}$
coefficient of thermal expansion, $\alpha_{2}=$	5E-06.000000	in $/{ }^{\circ} \mathrm{F}$
coefficient of thermal expansion, $\alpha_{3}=$	5E-06.000000	in / ${ }^{\circ} \mathrm{F}$
strain along x coordinate, $\varepsilon_{\mathrm{x}}=$	0.005000	in/in
strain along x coordinate, $\varepsilon_{y}=$	0.005000	in/in
poisson's ratio $\mu=$	0.3500	-
Reference temperature , $\mathrm{T}_{0}=$	59.00	${ }^{\circ} \mathrm{F}$
temperature center plate $1, \mathrm{~T}_{1}=$	102.00	${ }^{\circ} \mathrm{F}$
Frame plate 2 temperature, $\mathrm{T}_{2}=$	86.00	${ }^{\circ} \mathrm{F}$
Frame plate 3 temperature, $\mathrm{T}_{3}=$	86.00	${ }^{\circ} \mathrm{F}$
Results		
Area $\mathrm{A}_{\times 1}=$	9.000	in^2
Area $A_{2}=$	1.875	in^2
Area $A_{y 1}=$	10.000	in^2
Area $A_{3}=$	1.875	in^2
Stress, $\sigma_{x 1}=$	287.100	psi
Stress, $\sigma_{y 1}=$	287.100	psi
Stress, $\sigma_{2}=$	189.735	psi
Stress, $\sigma_{3}=$	189.735	psi
Force in x coordinate direction $\Sigma \mathrm{F}_{\mathrm{x}}=$	2939.653	Lbs
Force in x coordinate direction $\Sigma F_{y}=$	3226.753	Lbs

