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The evolution of a 2D ideal gas toward the state of thermodynamic equilibrium 

 

K. Papamichalis Dr. of Theoretical Physics  

 

The objective of the application  

The basic objective of the application is to test experimentally the Boltzmann H-theorem in a 2-

dimensional ideal gas. We check in real time if the particles' velocity-distribution converges 

with time to the Maxwell-Boltzmann distribution, irrespectively of the analytic form of their 

initial distribution.   

 

Key concepts and relationships  

Probability - Event - Sample space - Random variable - Probability density - Distribution of a 

random variable - Uniform distribution - Maxwell-Boltzmann distribution – Steady state of a 

dynamical system - Boltzmann's H functional  
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Preliminary knowledge - Description of the model and the main features of the 

application 

 

An aggregate of N particles is in a container of dimensions .L L  Each particle has the form of a 

disk with radius r and mass m. We correspond to each particle an integer j=0,1,2…N-1.   

The particles interact with each other and with the walls of the container. The interactions with 

the walls are elastic collisions. The mutual interactions of the particles take place among couples 

of particles. In each interaction the total linear momentum and the energy of the couple are 

conserved. According to our model, the particles of a couple interact when the distance of their 

centers is getting less than s r  where s is a coefficient controlling the probability to happen the 

interaction (see paragraph "The items, the graphs, and the tools of the simulation"). 

Then, strong repelling forces obeying Newton's third law are exerted on the particles. The 

duration of each interaction is negligible compared with the time passing among two successive 

interactions (see paragraph: "How do the particles interact?"). Between two successive 

interactions, each particle moves with constant velocity.  

The positions ( ),
j j
X Y  and the velocities ( ),

jx jy
V V  of the particles (the centers of the disks) are 

random variables(4). They are calculated in the inertial reference frame Oxy: the origin O is the 

left-down edge of the container and the axes Ox, Oy are parallel to its walls.   

The random variables ,
j j
X Y  fulfill the conditions:  

, , 0,1,... 1
j j

r Χ L r r Y L r j N  −   − = −     (1) 
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The initial state of the system is determined by the initial positions and velocities of the 

particles. The initial distribution of the particles' positions is uniform, i.e. the following 

conditions are fulfilled:  

a) The probability of the event(4): "the x-coordinate of the j-particle takes a value in the 

infinitesimal interval  ),x x Δx+ ", is calculated by the relationship:   

( ) , for each ,
2

j

Δx
p x X x Δx x r L r

L r
  + =  −  

−
   (2a)  

b) The probability of the event: "the y-coordinate of the j-particle takes a value in the 

infinitesimal interval ),y y Δy+ ", is calculated by the relationship:   

( ) , for each ,
2

j

Δy
p y Y y Δy y r L r

L r
  + =  −  

−
   (2b) 

 

The probability density(4) ( )U
p u  of a random variable U that takes values in an interval I of 

the real numbers R ( )I R  is defined by the relation:  

( ) ( ) , 0
U

p u U u Δu p u Δu Δu  + = →     (2c) 

For the case of the uniform distribution, the probability density is constant everywhere in the 

range of the random variable. Hence, according to 2a and b, the probability densities of the 

random variables ,
j j
X Y  are determined by the analytic expressions:     

( ) ( )
1

, , ,
2j jX Y

p x p y x y r L r
L r

= =  −  
−

   (3a) 

 

The probability distribution ( )
jX

P x  of the random variable Xj is defined as the probability of 

the event: "the value of the variable Xj is less than x". Given that the range of Xj is the interval 

,r L r−   , we right:   

( ) ( )
jX j
P x p r X x=    

Consider two disjoint sets Ι1 and Ι2, in the range of the random variable Xj:  

1 2
I I =    

The events: 1 2
" "  and " "

j j
X I X I   are mutually independent and the following relation holds:  

( ) ( ) ( )1 2 1 2j j j
p X I I p X I p X I  =  +   

Then we can partition the range of Xj in a sequence of successive infinitesimal intervals and 

express the probability distribution ( )
jX

P x  as follows:  

( ) ( ) ( ) ( ) ( )0 1 1 2 1
...

jX j j j M j M
P x p r X x p x X x p x X x p x X x

−
=   =   +   +    

1 0
where: ,  0,1,... 1,  0,  and ,

n n n n M
x x Δx n M Δx M x r x x

+
= + = − → → + = =  

Hence, according to 2a and c, we obtain:  

( ) ( ) ( )
j j

x

X j X

r

P x p r X x p x dx=   =      (3b) 

( )
1

,
2 2j

x

X

r

x r
P x dx r x L r

L r L r

−
= =   −

− −    (3c) 

From the last equation, we result: ( ) 1
jX

P L r− =  which agrees with our anticipation.  

 

In our model, the position of each particle at time t is independent of the positions of the other 

particles; the N events (j=0,1,…N-1): )"at time , for the j-particle it holds: , "
j

t X x x Δx +  are 

mutually independent. Hence the number of particles Δn(x,t), with x-coordinate in the interval 

),x x Δx+  at time t, is calculated by the equations:   

( ) ( )
1 1

0 0

,
2 2

N N

j
j j

Δx N
Δn x t p x X x Δx Δx

L r L r

− −

= =

=   + = =
− −

     (4a) 

The number of particles N(x,t) with x-coordinates less than a given value x -called: 

"distribution of the particles' x-position"- arises directly from 3b, 3c and 4a:  
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( ) ( )
1

0

,
2j

N

X X
j

x r
N x P x N r x L r

L r

−

=

−
= =   −

−
     (4b) 

The particles' interactions do not cause any change at the analytical expression of the particles' 

x-position distribution: every time t, the probability densities of the random variables Xj, Yj, 

j=0,1,…N-1 are given by the expressions 3.   

You can easily derive relations similar to 4, for the random variables Yj, j=0,1,…N. 

 

In the environment of the simulation, the initial positions of the particles are calculated by using 

the JavaScript method for generating random numbers. The directions of the initial velocities 

are chosen so that the gas is homogeneous and isotropic. On the other hand, along any pair-

interaction, the particles emerge with velocities with directions completely random, independent 

of their initial directions. Hence, the homogeneity and the isotropy of the system are not 

affected.  

According to the Boltzmann theoretical model, the distribution of the particles' velocity 

magnitude is changing with time and it converges to an equilibrium distribution. The equilibrium 

distribution for the classical ideal gas is the Maxwell-Boltzmann distribution (2,5) (M-B 

distribution)  

One must notice that the system will finally get the M-B distribution, independently of 

the initial velocity distribution. When the system reaches the M-B distribution, it 

remains in that state: it is in a stable state of equilibrium. This theoretical prediction 

is impressively confirmed in the virtual environment of the simulation.    

 

The user is permitted to choose the initial velocity distribution of the system among three 

alternatives:  

1st choice: At t=0 the directions of the velocities are random, but their magnitudes have the 

same value, Vin. In that case, consider a partition of the velocity magnitude range to a union of 

infinitesimal intervals:  

) )
1

max 1
0

0, ,
M

μ μ
μ

V v v
−

+

=

=      (5a) 

0 1 0 0 2 1 1 1 max
0 ... ...

μ μ μ M
v v v Δv v v Δv v v Δv v V

+
=  = +  = +  = +  =  

We symbolize Vmax the least upper bound of the velocity magnitude in the simulation 

environment. So, in the initial state, for )max
0,

j
V V   we can write:  

( )
0 για 

1 για 

μ in

μ j μ μ

μ in

v V
p v V v Δv

v V


  + = 

=

 

Hence, the distribution probability of the variable Vj takes the form:  

( ) ( ) ( ) ( )1
0

0
μ

j

μ

v v

V j μ j μ in
v

P v p V v p v V v θ v V
=

+
=

=   =   = −  

( )
0 for  

1 for 

in

in

in

v V
θ v V

v V


− = 


 

The particles' velocity-distribution for the initial state of the gas is:  

( ) ( ) ( ) ( ) ( )
1 1 1

0 0 0

0
j

N N N

V V j in in
j j j

N v P v p V v θ v V Nθ v V
− − −

= = =

= =   = − = −     (5b) 

 

2nd choice: At t=0. The velocities of the half particles equal to zero. For the other half, the 

directions of the velocities are random, and their magnitudes have the same value, Vin. Hence, 

the initial velocity distribution is expressed as follows:  

At t=0, the magnitude of the velocity of whichever particle in the aggregate equals 0 with 

probability 1/2 or Vin with probability 1/2 too. The probability of any other value is zero. 

Consider again a partition of the velocity range to a union of infinitesimal intervals (5a):  

) )
1

max 1
0

0, ,
M

μ μ
μ

V v v
−

+

=

=   

Then, the probability that "the value of the random variable Vj is in a specific infinitesimal 

interval of the partition" is:  
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( )

1
 for 0

2

1
 for 

2

0  for 0 and  

μ

μ inμ j μ μ

μ μ in

v

v Vp v V v Δv

v v V


=




=  + = 


  

 

We infer that the particles' velocity distribution is expressed as follows:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

1 1 1

0 0 0 0

1

0

0

1 1

2 2 2

μ

j

μ

v vN N N

V V j μ j μ μ
j j j v

N

in in
j

N v P v p V v p v V v Δv

N
θ v θ v V θ v θ v V

=− − −

= = = =

−

=

= =   =   + =

 
= + − = + − 

 

   



   (6) 

 

3d choice: At t=0, both the directions of the velocities and their magnitudes are random. The 

values of the velocity magnitude for each particle are chosen by the random number generator 

of JavaScript, in the interval [0, vmax). The parameter vmax is related to the mean energy of the 

gas particles and is to be calculated as follows:  

The choice of the velocity magnitudes using a random-numbers generator in the interval 

[0,vmax) implies that the probability of the event: "The velocity magnitude Vj of the j-particle is 

in the infinitesimal interval ),
μ μ μ
v v Δv + " is calculated by the equation:  

( )
max

μ

μ j μ μ

Δv
p v V v Δv

v
  + =      (7) 

We calculate the mean value of the kinetic energy E  and the velocity magnitude V  of the j-

particle, for any j=0,1,2…N-1 and relate them with vmax: 

( )
maxmax max

2 2 2 2

max
0 0 max max 0

1 1 1

2 2 2 6

μ μ

μ μ

vv v v v
μ

μ μ j μ μ μ
v v

Δv m
E mv p v V v Δv m v v dv mv

v v

= =

= =

=   + = → =    

If the value of the mean energy is known (in the environment of the simulation), the parameter 

vmax is determined by the equation:  

max

6E
v

m
=       (7) 

 

The sequence of the experimental graphs 

In the environment of the simulation, the particle-particle interactions cause a gradual variation 

of the velocity distribution. The theoretical variation of the distribution function with time is 

determined by equation 20 (see unit: "The theoretical model of the 2D ideal gas"). We can 

check the theoretical predictions by constructing a sequence of experimental graphs 

depicting the evolution of the actual velocity distribution. To this end, in the simulation program 

we have determined a sequence of time moments  1
0, ,...

j J
t t t  at which the program counts 

the number ( );
exp j
N v t  of particles with velocity magnitudes in the intervals:   

) ) )
1 2 1 2x max

max
0, , 0, ,... 0, , ...

M Mma
μ μ μ μ μ μ
v v v v v v V     =

  
   (8a) 

The set of values  
1 2 max

max
0, , ,...

Mμ μ μ
v v v V=  determines a partition of the magnitude velocity 

range )max
0,V :  

) ) ( )
max

1 0 max

1

max max
0

0, , , 0,
k k M

M

μ μ μ μ
k

V v v v v V
+

−

=

= = =     (8b) 

As a result, we obtain a sequence of experimental graphs that depict the actual variation of the 

particles' velocity distribution with time. The max time tJ is determined in the simulation 

program.  

 

How we have constructed partition (8b) in the program of the simulation?  
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First, we decide how many points Mmax will compose each experimental graph. Then, we define 

the length of each interval )
1

,
k kμ μ

v v
+


  to be: max

max
1

V
Δv

M
=

−
 Hence:  

1 max
, 0,1,... 1

k kμ μ
v v Δv k M

+
= + = −  

Or:  

max
max

max

, 0,1,... 1
1kμ

V
v k k M

M
= = −

−
    (8c) 

For t=0, the graph ( );0
exp
N v  versus v is identical to the graph of the initial distribution the user 

has chosen. As time runs, we see that the sequence of the experimental graphs converges with 

an impressive way to the Maxwell-Boltzmann equilibrium distribution ( )MB
N v  according to the 

predictions of the Boltzmann theoretical model: ( ) ( )lim ;
exp MB

t
N v t N v

→
=  

 

How we have chosen the maximum value 
max
V  appearing in relations 8, in the program of the 

simulation?  

In the unit "Equilibrium of the system: The Maxwell-Boltzmann distribution"  we shall see that in 

the equilibrium state of a two-dimensional ideal gas, the particles' velocity distribution is 

determined by the analytical expression (Maxwell-Boltzmann):   

( )
2

21
mv

β

MB
N v N e

− 
= − 

 
 

     (9a) 

Constant β  is related to the mean energy Ε  of the particles, according to 34: 
1

E
β

=  

From 9a, we result that the fraction ( ) /
MB

λ N v N=  of the particles with velocity magnitude less 

than v equals to 

2

21
mv
β

e
−

−  Conversely: the max value of the velocity magnitude corresponding  

to a given value of λ  is:   

 

( )
2

ln 1
λ
v λ

βm
= − −       (9b) 

The graph of 9b, in the unit system of the simulation, ( )1, 100m E= =  is depicted in the 

following figure.    

 

 
 

We can see that a percentage of 999/1000 of the particles gets a velocity magnitude less than   

37.17 (simulation units). Hence, it is a very good approximation to choose the max value of the 

velocity magnitude Vmax in relations 8a-c by 9a, for 999 /1000λ =  

 

 

Return to the contents 
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The theoretical model of the 2-dimensional ideal gas  

 

How the particles interact?  

In the virtual environment of the simulation, we study the motion of N interacting particles. 

Each particle has a disk shape of radius r and mass m. The system is confined in a 2-

dimensional orthogonal container of width L and height L. The interactions between the particles 

and the walls (p-w) of the container are elastic collisions. Only pairs of particles are possible to 

interact at each time moment (p-p interaction).  

In every p-p interaction, the linear momentum and the total kinetic energy of the interacting 

particles are conserved. The direction of the velocities just after every interaction is random, 

independent of the velocity directions just before the interaction. Between two successive 

interactions, each particle moves with constant velocity. Finally, the duration of any interaction 

is negligible, compared with the time between two 

successive interactions of any particle in the system.  

 

Now, we shall relate the velocities of the interacting 

particles just before and just after their interaction.     

Consider that at time t, the j-particle interacts with 

the k-particle. Let us symbolize , , ,
j j k k
r v r v  the 

positions and the velocities of the particles just 

before their interaction, in the inertial reference 

frame Oxy, fixed to the container (figure 1).  

In the simulation, the interaction moment t of the 

two particles is determined by the following two 

conditions:  

a) j k
r r s r−    (The parameter s is controlled by 

the user) 

b) ( ) ( ) 0
j k j k

d
r r r r

dt
 − − 
 

 or:  

( ) ( ) 0
j k j k
v v r r−  −   

(The two particles are moving so that, in the infinitesimal time interval ),t t Δt+  the distance 

of their centers decreases) 

Symbolize 
jk
K K  the center of mass of the j and k-particles at the interaction moment t and 

Kxy, their center-of-mass inertial reference frame (figure 1).  

We implement the following steps:  

1) Find the relations of the velocities in the frames Oxy and Kxy.  

2) Calculate the velocities just after the interaction in the center of mass frame Kxy.  

3) Calculate the velocities just after the interaction in the frame Oxy.  

 

1) The particles have equal masses. Hence:   

( ) ( )
1 1

,
2 2

j k K j k
OK r r V v v= + = +     (10a) 

We symbolize K
V  the center of mass velocity in Oxy. The velocities of the j and k-particle, in the 

Kxy system, are symbolized: ,
j k
u u   

According to figure 2, the following relations are true:  

( )

( )

1

2

1

2

j j j k

k k k j j

s r OK r r

s r OK r r s

= − = −

= − = − = −

    (10b) 

( )

( )

1

2

1

2

j j k

k k j j

u v v

u v v u

= −

= − = −

      (10c) 

 
Figure 1 
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j j

k k

r s OK

r s OK

= +

= +
       (10d) 

j j K

k k K

v u V

v u V

= +

= +
       (10e) 

2) Just after the interaction of the j and k-particle, their velocities ,
j k
u u   in the Kxy frame  are 

calculated from the linear momentum and energy conservation (figure 2):   

0
j k j k
u u u u + = + =      (11a) 

2 2 2 2

j k j k
u u u u + = +   (11b) 

11a and b imply that:  
2 2 2 2

j k j k
u u u u = = =   (11c) 

We infer that ,
j k
u u   have mutually opposite directions 

and their magnitude are the same with the velocities just 

before the interaction; but in general, their directions are 

different from the direction of the velocities just before 

the interaction. The directions of ,
j k
u u   are determined 

by a rotation angle θ  forming with ,
j k
u u  respectively 

(figure 2). In our model, the value of theta ( )θ  is random; 

it is determined by the JavaScript random values method.    

According to figure 2, the x and y-components of ,
j k
u u   

in Kxy are calculated as a function of the x and y-

components of the velocities ,
j k
u u  and the angle θ :   

cos sincos sin

sin cos sin sin

jx jx jx jy

jy jy jx jy

u u u θ u θθ θ

u θ θ u u θ u θ

 +      
= =            − − +      

 (12a) 

jxkx

ky jy

uu

u u

   
= −          

   (12b) 

3) The velocities ,
j k
v v   of the j and k-particle just after their interaction, in the Oxy reference 

frame are calculated by equations 10e, 12a, and b:  

,
j j K k k K
v u V v u V   = + = +      (13) 

 

Return to the contents 

 

How the particles' velocity probability function varies with time?  

A) We have considered that every "time moment", the range of the velocity magnitude for each 

particle is a finite set:  1 2
0, , ,...

V M
Ω v v v=   

The values: 
1 2

0, , ,...
M

v v v  are determined by a partition of the interval )max
0,v : 

) )
1

max 1
1

0, ,
M

μ μ
μ

v v v
−

+

=

=     

Where: 
1 0 max

, 0,
μ μ μ M
v v Δv v v v

+
= + = =  The positive quantities 

μ
Δv  are infinitesimals  

The "time moments" are defined by the time sequence: 0, ,2 ,... ,...Dt Dt q Dt  . The constant 

time length Dt is determined in the simulation program; its value is selected so that it is much 

less than the mean time between two successive interactions of any particle.    

 

Let ( );
j
p t v  be the probability of the event: "At time t, the velocity magnitude of the j-particle 

equals v, where: ".
V

v Ω  We call ( );
j
p t v  "velocity probability function".  

It is obvious that:  

( ); 1
V

j
v Ω

p t v


=  

 
 

 
Figure 2 
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In our model, the analytic expression of the probability ( );
j
p t v  is independent of j: the 

probabilities ( );
j
p t v  are the same for all particles. Hence, we can write:  

( ) ( ); ; for any 0,1,...
j
p t v p t v j N= =     (14a) 

Consequently, if we symbolize ( );n t v  the number of particles that at time t have velocities with 

magnitude v, we imply that:  

( ) ( ) ( )
1

0

; ; ;
N

j

n t v p t v Np t v
−

=

= =      (14b) 

As the system evolves from its initial state to the equilibrium state, the probability ( );p t v  and 

the particles' number ( );n t v  change with time; this is caused by the p-p interactions.  

Let us see how the variation of these functions is expressed mathematically (1,2).    

 

B) Assume two neighboring time moments t and t+Dt. The variation of ( );n t v  in the time 

interval ,t t Dt+    is caused by the following reasons:  

a) ( );n t v  increases by the number of particles that their velocity magnitude at time t was 

different of v and, because of their interactions, at time t+Dt they emerge with velocity 

magnitude: V=v   

b) ( );n t v  decreases by the number of particles that their velocity magnitude at time t was v 

and, because of their interactions, at time t+Dt they emerge with velocity magnitude: V v  

 

Define the compound event ( )', ' , :
t t Dt
Γ v u u v

→ +
→  "At time t, two particles P1 and P2 have 

velocities with magnitudes v' and u', respectively – P1 and P2 interact in the time interval 

,t t Dt+    and at time t+Dt they emerge with velocity magnitudes v, u" 

The event ( )', ' ,
t t Dt
Γ v u u v

→ +
→  is composed of the independent events 1 and 2:Γ Γ   

1:Γ "At time t, the velocity magnitudes of P1 is v' and of P2 is u' "  

2:Γ "P1 and P2 interact in the time interval ,t t Dt+    and at time t+Dt they emerge with 

velocities of magnitude v and u " 

Let us symbolize: ( )', ' ,
t t Dt
p u v u v

→ +
→  the probability of ( )', ' ,

t t Dt
Γ v u u v

→ +
→  and ( ) ( )1 , 2p Γ p Γ  

the probabilities of 1 and 2Γ Γ  respectively. Then it holds:  

( ) ( ) ( )', ' , 1 2
t t Dt
p u v u v p Γ p Γ

→ +
→ =     (15a) 

In our model, the events: "The velocity magnitude of P1 at t is v" and "The velocity magnitude 

of P2 at t is u" are independent; hence, we can write (see 14a, b):  

( ) ( ) ( )1 , ' , 'p Γ p t v p t u=      (15b) 

 

The probability ( )2p Γ  of the event 2Γ  is called "transition probability". In our model ( )2p Γ  

is independent of the time t; it is proportional to the time length Dt. We write:  

( ) ( )2 ', ' ,p Γ Dt σ v u u v= →      (16) 

The quantity ( )', ' ,σ v u v u→  is a function of the initial and the final mechanical state of the 

interacting particles. Its analytic expression depends on the type of p-p interactions. 

Nevertheless, there are some general properties fulfilled by ( )', ' ,σ v u v u→  derived by the 

symmetries we have imposed on our model:  

a)  The mechanism of the p-p interaction is invertible, i.e. the probabilities of the transitions: 

( ) ( )', ' ,v u v u→  and ( ) ( ), ', 'v u v u→  in the same time length Dt are equal (see paragraph: 

"How the particles interact?"):  

( ) ( )', ' , , ', 'σ v u v u σ v u v u→ = →     (17) 

b)  The gas is homogeneous and isotropic. Then, in combination with 17a, we infer that:    

( ) ( ) ( ) ( )', ' , , ', ' ', ' , ', ' ,σ v u v u σ v u v u σ u v v u σ v u u v→ = → = → = →   (18) 
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According to 15-18, the following equations are implied:  

( ) ( ) ( ) ( )', ' , ; ' ; ' ', ' ,
t t Dt
p v u v u Dt p t v p t u σ v u v u

→ +
→ = →    (19a) 

( ) ( ) ( ) ( ) ( ) ( ) ( ), ', ' ; ; , ', ' ; ; ', ' ,
t t Dt
p v u v u Dt p t v p t u σ v u v u Dt p t v p t u σ v u v u

→ +
→ = → = →   (19b) 

 

C) Variation of the particles' number with velocity magnitude v with time  

Let us first see how the probabilities ( ),p v t  change with time. According to the arguments of 

paragraph (B), the variation of ( ),p v t  in the time interval ,t t Dt+    is given by the subsequent 

equations:  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

; ; ', ' , , ', '

; ', ' , ; ' ; ' ; ;

t t Dt t t Dt
u u

u

p t Dt v p t v p v u u v p v u u v

p t v Dt σ v u v u p t v p t u p t v p t u

→ + → +
+ = + → − → =

= + → −

 


  (19d) 

Or:  

( )
( ) ( ) ( ) ( ) ( )( )

;
', ' , ; ' ; ' ; ;

u

p t v
σ v u v u p t v p t u p t v p t u

t


= → −


   (20) 

By using 20 and 14b, we derive the equation:  

( )
( ) ( ) ( ) ( ) ( )( )

;
', ' , ; ' ; ' ; ;

u

n t v
N σ v u v u p t v p t u p t v p t u

t


= → −


   (21) 

In 20 and 21, the summations include terms corresponding to any possible transition 

( ) ( )', ' ,v u v u→  that is compatible with the linear momentum and energy conservation.   

It is worth noticing that 20 or 21 describe the variation of the velocity magnitude distribution of 

the gas, given that the p-p interaction is determined by the quantity ( )', ' , .σ v u v u→  In the 

case that the particles do not interact, it holds ( )', ' , 0σ v u v u→ =  for any value of the velocity 

magnitudes. Then, the initial velocity distribution of the particles is not changing with time.  

 

Return to the contents 

 

The Boltzmann H-theorem (7) 

 

In our model, the evolution of the state of the system is described by equation 20 or 21. A 

steady state of the gas is obtained by any probability function which is independent of time: 

( );
0

p t v

t


=


      (22) 

We call it "Maxwell-Boltzmann probability function" (MB-probability function); symbolize: ( )
MB
p v  

and the particles' velocity distribution determined by this, is called "MB-velocity distribution".  

From 20-22, we imply that ( )
MB
p v  must fulfill the condition:   

( ) ( ) ( ) ( )' '
MB MB MB MB
p v p u p v p u=     (23) 

 

We shall briefly demonstrate Boltzmann H-theorem (1,2,7) in the context of our model: 

Independently of the initial velocity distribution, the system passes through a 

sequence of distributions which converges to the MB-distribution. This is due to the p-

p interactions that obey conditions 18.      

 

The variation of the probability function ( );p t v  with time is given by equation 20.  

Define the functional:  

( ) ( )( ) ( ); ln ; , ( ) ;
t t
def

v

H p p t v p t v p v p t v=        (24) 

We shall show that t
H p    fulfills the conditions of a Lyapunov function (3) for the dynamical 

system described by equation 20: I.e. for any family of distribution functions ( ) ( );
t
p v p t v=  

discriminated by the time t  and determined by equation 20, the following relations are true:  

0
t

H p           (25a) 
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0t
dH p

dt

          (25b) 

0MB
dH p

dt

   =       (25c) 

 

Steps to the proof 

a) From 14a, b, it is true that: ( )
( );

0 ; 1
n t v

p t v
N

 =    

From this, we imply that: ( )( )ln ; 0p t v   Hence 25a is true for any probability function 

( ) ( );
t
p v p t v=  

 

b)  From 24, we obtain the equation:  

( )
( )( )

;
ln ; 1t

v

dH p p t v
p t v

dt t

    = +
 

     (26) 

From 20, 26 and the symmetry relations 18, we derive the subsequent relations:     

( ) ( ) ( ) ( ) ( )( ) ( )( )', ' , ; ' ; ' ; ; ln ; 1t

v u

dH p
σ v u v u p t v p t u p t v p t u p t v

dt

    = → − +
   

( ) ( ) ( ) ( ) ( )( ) ( )( )', ' , ; ' ; ' ; ; ln ; 1t

v u

dH p
σ v u v u p t v p t u p t v p t u p t u

dt

    = → − +
   

Adding these relations by parts, and using again the symmetry properties of ( )', ' ,σ v u v u→  we 

obtain:  

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )2 ', ' , ; ' ; ' ; ; ln ; ln ; 2t

v u

dH p
σ v u v u p t v p t u p t v p t u p t v p t u

dt

    = → − + +
   

( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )2 ', ' , ; ' ; ' ; ; ln ; ' ln ; ' 2t

v u

dH p
σ v u v u p t v p t u p t v p t u p t v p t u

dt

    = → − − − −
   

Adding by parts:  

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )4 ', ' , ; ' ; ' ; ; ln ; ' ; ' ln ; ;t

v u

dH p
σ v u v u p t v p t u p t v p t u p t v p t u p t v p t u

dt

    = − → − −
   

The logarithm is a monotonically increasing function; hence for any x,y>0 it holds:  

( ) ( )ln ln 0x y x y− −   

Besides, the transition probability is a positive quantity.  

We imply that for any probability function, it is true that:  

0t
dH p

dt

     

 

c) The MB probability function is a stable solution of 20; it is determined by 22 and 23. Hence, 

by using 26, relation 25c is derived.  

 

t
H p    takes its extreme value for ( ) ( )

t MB
p v p v=  (see 26). Hence, following 25a-c, we infer that 

it is bounded: 
0

0
MB t

H p H p H p             (p0 is the initial probability function)  

For t → +  the function 
t

H p    is strictly decreasing with time and has a greatest lower bound 

MB
H p   ; we conclude that it converges to MB

H p    and that lim ( ) ( )
t MB

t
p v p v

→
=  independently on 

the form of the initial probability function p0.  

 

Any sequence of probability functions ( )( ) ; , 0,1,...
k

def
p v p k Dt v k=  =  determined by the analytic 

expression 19d converges to the Maxwell-Boltzmann probability function, independently on the 

initial probability function 
0
( )p v . That is: 

( ) ( )1
( ) ( ) ', ' , ( ') ( ') ( ) ( )

k k k k k k
u

p v p v Dt σ v u v u p v p u p v p u
+

= + → −   (27a) 

lim ( ) ( )
k MB

k
p v p v

→
=      (27b)  
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When the system acquires the Maxwell-Boltzmann probability function, it does not escape from 

this: it is in a stable equilibrium state.  

 

Return to the contents 

 

Equilibrium of the system: The Maxwell-Boltzmann distribution  

 

Which is the analytic expression of the velocity magnitude distribution, in the equilibrium state 

of the two-dimensional gas?  

The analytic expression of the probability function ( )
MB
p v  is derived by 23 and the conservation 

principles characterizing the p-p interactions. For the case of our two-dimensional gas, linear 

momentum and kinetic energy are conserved for any p-p interaction. Keeping the formalism of 

the previous paragraphs, we have:  
2 2 2 2' '

2 2 2 2

mv mu mv mu
+ = +      (28) 

The primed quantities indicate the state of the interacting particles just before their interaction, 

and the unprimed just after.   

We assume that relation 28 is the only additive scalar conservation principle.    

The equilibrium condition 23 implies another relation connecting the states of the interacting 

particles before and after their interaction:   

( ) ( ) ( ) ( )' '
MB MB MB MB
p v p u p v p u=  

Or:  

( ) ( ) ( ) ( )ln ' ln ' ln ln
MB MB MB MB
p v p u p v p u+ = +     (29) 

Relation 29 indicates a new additive scalar conservation principle concerning the velocity 

magnitudes of the particles before and after their interaction. We presume that 29 must be 

reduced to 28; i.e.: 
2

ln ( ) .
2

MB

v
p v m const +  

Hence, we can write:  

( )
2

2

mv
β

MB
p v e

−

      (30)  

The constant quantity β is to be specified.  

 

To accomplish our calculations, let us consider that the particles' velocity magnitude is a 

continuous random variable, taking values in the interval )0,+  

In our two-dimensional system, the number ( )Δn v  of particles with velocities in the interval: 

), , 0v v Δv Δv+ →  is proportional to the velocity probability ( )MB
p v  and to the number of 

particles with velocities in the infinitesimal ring with radius v and width Δv  We can write:  

( ) ( )
2

2 2
mv
β

Δn v n v V v Δv NAe πvΔv
−

=   + =    (31)   

A is a constant.   

By integrating 31a in the range )0,+  of the velocities, we obtain: 
2

mβ
A

π
=  

Hence, 31 takes the form:  

( ) ( )
2

2

mv
β

Δn v n v V v Δv Nmβe vΔv
−

=   + =     (32a) 

From 32a we can define "the probability density" in the velocity neighborhood 

), , 0v v Δv Δv+ →  by the equation:  

( )
( )1

def

Δn v
f v

Ν Δv
=  

In the equilibrium state, for the two-dimensional gas, the probability density takes the analytic 

expression:  

( )
( )

2

2
1

mv
β

MB

Δn v
f v mβe v

Ν Δv

−

= =     (32b) 
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The number of particles with velocity magnitude less than a given value v -i.e. the particles' 

velocity distribution- in the equilibrium state, is calculated by 32b:  

( ) ( )
0

v

v

N v N f v dv
=

 =   

We find:  

( )
2

21
mv

β

MB
N v N e

− 
= − 

 
 

     (33a) 

The velocity distribution function is calculated by the relationship: 

( ) ( )
1

F v N v
N

=  

hence: 

( )
2

21
mv

β

MB
F v e

− 
= − 
 
 

      (33b) 

 

The constant β  is related to the mean kinetic energy of the gas particles:  

 

2

2 2 2

0

1 1 1

2 2

mv
β

E mV dv mv mβe v
β

+
−

= = =     (34) 

 

In the environment of the simulation, the constant mean energy of the system is calculated 

from the initial velocities of the particles, according to the relation:  
1

2

0

1 1

2

N

j
j

Ε mv
Ν

−

=

=       (35) 

In the equilibrium state, we find:  

( )
2

1
2 2 2 2

0 0 0

2

2 2 2

0 0 0

1 1 1 1 1

2 2 2

1

4 2 2

mvN v β

j
j v v

mζ mζ mζ
β β β

ζ ζ ζ

Ε mv mV Δn v V v Δv dv mv mβe v
Ν Ν

m m m
β dζζe ζde dζe

β

+− =+ −

= = =

+ + +
− − −

= = =

= =   + = =

   
= = − = =   

   
   

  

  

 

Hence: 
1

1
2

0

1 1 1

2

N

j
j

β mv
ΝE

−
−

=

 
= =  

 
     (36) 

 

Return to the contents 

   

The items, the graphs, and the tools of the simulation 

 

[The system of units is determined in the program of the simulation]  

 

The simulation window: Here the user can see the motion of N=300 interacting particles of a 

2D-gas, in a plane container. Each particle is a disk of radius r=0.1 length-unit and mass m=1 

mass-unit. The container is orthogonal of dimensions LxL, with L=20 length-unit.  

One of the particles has been colored red and its path is depicted in the virtual environment of 

the simulation. So, the user can watch the successive interactions of this specific particle with 

the other particles and the walls of the container.    

 

The initial position-distribution of the particles is random. The directions of the initial velocities 

are random too, but the user can select one of three possible initial velocity magnitude 

distributions: 

1st choice, "step_function_1": All particles have the same velocity magnitude.  

2nd choice, "step_function_2": Half particles have zero velocity and the rest have the same 

velocity magnitude.  

3d choice, "chaotic": The initial velocity magnitude of each particle is calculated by a random 

process, but the total energy of the particles is controlled by the user.  
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The mean energy of the particles is controlled by the user. Hence, the value of β -which has 

been renamed to "b"- is changed under any specific selection of mean energy.  

The user can also control the value of a quantity called "the strength" of the interaction. This 

quantity is related to the transition probability ( )', ' ,Dt σ v u v u →  discussed in the paragraph 

"How the particles' velocity probability function varies with time". In our model, the transition 

probability is an increasing function of the least distance which is necessary for two particles to 

interact. So, the "strength" coefficient, by taking values between 0 and 1.5 controls the least 

necessary distance for the p-p interaction. For strength=0, there is no interaction between the 

particles, and the user can see that the initial magnitude-velocity distribution is not changing 

with time.   

 

The graph-windows: In the "Velocity-Distribution" graph, the user can watch in real-time, the 

experimental evolution of the particles' velocity distribution caused by the particles' 

interactions (blue points), and its convergence to the Maxwell-Boltzmann distribution predicted 

by the theoretical model (red curve). In the "Boltzmann H-functional" graph, the user watches 

in real-time, the experimental variation of the Boltzmann H-functional with time. In the 

"Measurement of the total energy" graph, the program measures the total energy of the 

particles at a sequence of time moments, and the user checks the conservation of the energy 

along the evolution of the system of the interacting particles, which is the basic prerequisite for 

the Boltzmann H-theorem.    

 

For the composition of the experimental velocity distribution graphs, at the time-moments: 

0, ,2 ,...t Δt Δt J Δt=  , the program counts the number ( ),N t v  of particles with velocities in a 

sequence of intervals:  

) ) )
1 2 1 2x max

max
0, , 0, ,... 0, , ...

M Mma
μ μ μ μ μ μ
v v v v v v V     =

  
 

[See relations 8a-c, paragraph "The sequence of the experimental graphs"]  

For each , 0,1,...
j
t j Δt j J=  =  the program plots the points ( )( ) max

, , , 1,2,...
k kμ j μ
v N t v k Μ=  in a 

system of axes v-N, and the corresponding experimental graph is accomplished. Every graph 

( ), , 1,2,...
j j
N N t v j J= =  appears at the moment 

j
t  and disappears at the moment 

1j
t

+
 of the 

next set of measurements.    

 

How the experimental graph of the Boltzmann H-functional versus time has been achieved? 

H is a functional of the probability function ( );p t v  Hence, we must evaluate the experimental 

values of ( );p t v  every time 0, ,2 ,...t Δt Δt J Δt=   at the array of magnitude velocity values: 

1 2 max

, ,...
Μμ μ μ

v v v 
 

 

Every time moment j
t  the program counts the number of particles ( ) max

, 0,1,...
kμ j

Δn t k M=  with 

velocities in the intervals (see relation 8c):   

) max
max

max

, , 0,1,... 1,
1k kμ μ

V
v v Δv k Μ Δv

M
 + = − =
 −

  

The experimental values of the probability function ( ) ( ),
k kμ j j μ
p t p t v=  are calculated by the 

relations:  

( )
( )

k

k

μ j

μ j

Δn t
p t

N
=  

It is noticed that some of the calculated values ( )
kμ j
p t  could be zero, whence the logarithm of 

( )
kμ j
p t  is not possible to be calculated. To confront these cases, we choose a small quantity 

0 1ε   and calculate the experimental value of H by the expression:    

( ) ( )( ) ( )( )
1

ln
Μ

j μ j μ j
μ

H t ε p t ε p t
=

= + +     (37) 

[Remember that: ( )
0

lim log 0
x

x x
+→

= ] 



14 

 

Return to the contents 

 

Activities implemented in the virtual environment of the simulation 

 

1. Select the initial distribution "step_function_1" and run the simulation successively by 

choosing the values: 

200, 1 400, 1Ε strength Ε strength   = = − = =     

300, 0.5 300, 1.5Ε strength Ε strength   = = − = =     

400, 0Ε strength = =   

a. Watch the motion of the particles and think if it appears to agree with the related 

descriptions of the theoretical model. Write down your comments.    

b. Write down the variations of the theoretical curves you notice when you vary the 

quantities Ε  and "strength" and explain them by using the theoretical model.   

c. Watch the sequence of the experimental distribution graphs and check if it converges to 

the Maxwell-Boltzmann distribution, according to the prediction of the Boltzmann H-

theorem. How this is related with the energy-graph shown in the environment of the 

simulation? 

d. Estimate the time needed for the system to reach the equilibrium state. How the 

variation of the quantities Ε  and "strength" appear to affect the transition time?  

e. Repeat actions a-d, for each of the mentioned selection of the quantities N and 

"strength" but choosing successively the initial distributions "step_function_2" and 

"chaotic".   

 

2. Select the initial distribution "step_function_1". Run the simulation by selecting successively 

the values: 200, 1 ,Ε strength = =   200, 1.5Ε strength = =   and 400, 1 .Ε strength = =   

For every case, watch the variation of the Boltzmann H-functional and estimate the time it 

converges to its steady value. Write down your conclusions. Compare the results of these 

activities with the results of the activities 1.   

 

3. Repeat the activities 2, by selecting the initial distributions "step_function_2" and "chaotic", 

successively. Compare the transition times of the system from its initial state to the 

equilibrium state, by keeping the values of the mean energy and the particles' number 

constant. Write down your conclusions.   

 

Return to the contents 
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