Fluid Thermal Driving Head

Thermal driving head is the force that causes natural circulation to take place. It is caused by the difference in density between two bodies or areas of fluid. 

Consider two equal volumes of the same type of fluid. If the two volumes are not at the same temperature, then the volume with the higher temperature will also have a lower density and, therefore, less mass. Since the volume at the higher temperature will have a lower mass, it will also have less force exerted on it by gravity. This difference in the force of gravity exerted on the fluid will tend to cause the hotter fluid to rise and the colder fluid to sink.

This effect is seen in many places. One example of this is a hot air balloon. The force causing a hot air balloon to rise is a result of a difference in density between the hot air inside the balloon and the cooler air surrounding it.

Heat added to the air in the balloon adds energy to the molecules of air. The movement of the air molecules increases and the air molecules take up more space. The air molecules inside the balloon take up more space than the same amount of air molecules outside the balloon. This means the hot air is less dense and lighter than the surrounding air. Since the air in the balloon is less dense, gravity has less effect on it. The result is that the balloon weighs less than the surrounding air. Gravity pulls cooler air down into the space occupied by the balloon. The downward movement of the cooler air forces the balloon out of the space previously occupied, and the balloon rises.

Contribute Article Spider Optimizer

© Copyright 2000 - 2018, by Engineers Edge, LLC www.engineersedge.com
All rights reserved
Disclaimer | Feedback
Advertising | Contact | Privacy Policy

Spider Optimizer

Engineering Book Store
Engineering Forum
Excel App. Downloads
Online Books & Manuals
Engineering News
Engineering Videos
Engineering Calculators
Engineering Toolbox
GD&T Training Geometric Dimensioning Tolerancing
DFM DFA Training
Training Online Engineering
Advertising Center

Copyright Notice

Publishing Program