Related Resources: Engineering Materials

Ceramic Matrix Composites Design Handbook, Volume 5

Manufacturing Engineering and Design
Engineering Materials

Composites Materials Handbook, Volume 5
Ceramic Matrix Composites

Premium Membership Required to view Document/Book

Related:

Open:

Composites Materials Handbook, Volume 5

Introduction:

Ceramic Matrix Composites Handbook contains guidelines for determining the properties of composite material systems, their constituents, and generic structural elements, including test planning, test matrices, sampling, conditioning, test procedure selection, data reporting, data reduction, statistical analysis, and other related topics. Part A contains guidelines for general development of material characterization data as well as specific requirements for publication of material data.

It must be emphasized that this handbook differentiates between material basis values (material allowables) and design allowable values. Material basis values, being an intrinsic property of a composite material system, are the focus of this handbook. Design allowable values, while often rooted in material basis values, are application dependent, and include specific additional considerations that may further affect the strength or stiffness of the structure.

TOC

PART A. INTRODUCTION AND GUIDELINES
PART B. DESIGN AND SUPPORTABILITY
PART C. TESTING
PART D. DATA REQUIREMENTS AND DATA SETS
APPENDIX A. DERIVATION OF THE RESIDUAL STRENGTH REDUCTION EXPRESSIONS FOR LCF AND RUPTURE LOADINGS

PART A. INTRODUCTION AND GUIDELINES . 2
1 MIL-17 GUIDELINES AND PROCEDURES.. 2
1.1 INTRODUCTION .. 2
1.1.1 Objectives of Ceramic Matrix Composite (CMC) Working Groups .. 2
1.1.1.1 Objectives and tasks for Data Review Working Group .. 3
1.1.1.2 Vision, goals and objectives for Materials and Processes Working Group. 3
1.1.1.3 Vision, goals and objectives for Structural Analysis & Design Codes Working Group . 4
1.1.1.4 Vision, goals and objectives for Testing Working Group 4
1.2 PURPOSE .. 4
1.3 SCOPE . 6
1.3.1 Part A: Introduction and Guidelines. 6
1.3.2 Part B: Design Supportability . 6
1.3.3 Part C: Testing 6
1.3.4 Part D: Data Requirements and Data Sets . 6
1.4 USE OF THE DOCUMENT AND LIMITATIONS 7
1.4.1 Source of information .. 7
1.4.2 Use of data and guidelines in applications 7
1.4.3 Strength properties and allowables terminology 7
1.4.4 Use of References. 8
1.4.5 Use of tradenames and product names. 8
1.4.6 Toxicity, health hazards, and safety . 8
1.4.7 Ozone depleting chemicals .. 8
1.5 APPROVAL PROCEDURES 8
1.6 SYMBOLS, ABBREVIATIONS, AND SYSTEMS OF UNITS.. 9
1.6.1 Symbols and abbreviations 10
1.6.1.1 Constituent properties .. 14
1.6.1.2 Laminae and laminates 15
1.6.1.3 Subscripts 16
1.6.1.4 Superscripts 17
1.6.1.5 Acronyms . 17
1.6.2 System of units. 20
1.7 DEFINITIONS. 20
2 INTRODUCTION, HISTORY AND OVERVIEW 43
2.1 HISTORY AND OVERVIEW. 43
2.2 APPLICATIONS .. 44
3 PROCESSING, CHARACTERIZATION AND MANUFACTURING . 47
3.1 CMC SYSTEMS, PROCESSING, PROPERTIES AND APPLICATIONS.. 47
3.1.1 CMC processing methods.. 47
3.1.1.1 Chemical vapor infiltration CMCs 47
3.1.1.1.1 CVI fabrication technique.. 47
3.1.1.1.2 Typical properties for CVI CFCCs . 48
3.1.1.1.3 Typical applications for CVI CFCCs. 50
3.1.1.2 Directed metal oxidation (DIMOX™) . 50
3.1.1.2.1 Basic processing procedures for DIMOX™. 50
3.1.1.2.2 Typical properties of DIMOX™ 51
3.1.1.2.3 Typical applications for DIMOX™. 51
3.1.1.3 Polymer derived ceramics .. 51
3.1.1.3.1 Introduction 51
3.1.1.3.2 Fabrication. 52
3.1.1.4 Carbon-carbon composites 55
3.1.1.5 Oxide systems –sinter/hot press . 56
3.1.1.6 Sol-gel processing .. 56
3.1.1.6.1 Introduction 56
3.1.1.6.2 Single oxide compositions. 57
3.1.1.6.3 Advantages and disadvantages of sol-gel processing 57
3.1.1.6.4 Drying control agents and fillers. 59
3.1.1.6.5 Sol-gel processing of 2-D structures 60
3.1.1.6.6 Sol-gel processing of 3-D structures 60
3.1.1.6.7 Summary 61
3.1.1.7 Melt infiltration 61
3.1.1.7.1 Resin infiltration, pyrolysis, and reaction 61
3.1.1.7.2 Slurry casting 62
3.1.1.8 Reaction processing .. 62
3.1.1.9 Fibrous monoliths (FMs).. 63
3.1.1.9.1 Introduction 63
3.1.1.9.2 Macrostructure of fibrous monoliths . 64
3.1.1.9.3 Mechanical properties of fibrous monoliths.. 65
3.1.1.9.4 Thermal properties of fibrous monoliths. 66
3.1.1.9.5 Applications for fibrous monoliths . 67
3.1.1.10 Hybrid systems .. 67
3.2 FIBER/REINFORCEMENT SYSTEMS AND TECHNOLOGY. 67
3.2.1 Introduction – the role and function of reinforcements in CMCs. 67
3.2.2 Continuous fibers 67
3.2.2.1 Oxide fibers. 67
3.2.2.2 SiC monofilaments.. 70
3.2.2.3 Small diameter SiC-based fibers . 72
3.2.2.4 Carbon fibers . 73
3.2.2.4.1 Introduction and applications .. 73
3.2.2.4.2 Structure and general properties of carbon fibers. 75
3.2.2.4.3 Fabrication of carbon fibers.. 76
3.2.2.4.4 Availability and sources of carbon fibers 79
3.2.2.4.5 Specific properties of carbon fibers.. 79
3.2.3 High temperature properties of continuous ceramic fibers 82
3.2.3.1 Carbon fibers . 84
3.2.4 Discontinuous reinforcements – whiskers, particulates, and in-situ.. 84
3.3 INTERPHASE/INTERFACE TECHNOLOGY AND APPROACHES. 84
3.3.1 Introduction. 84
3.3.1.1 The roles and requirements for fiber interfaces and coatings .. 86
3.3.1.2 Fabrication of fiber interface coatings .. 87
3.3.2 Interphase composition 88
3.3.2.1 Carbon .. 88
3.3.2.2 Boron nitride .. 89
3.3.2.3 Oxide . 89
3.3.2.3.1 Non-layered oxide interfaces .. 89
3.3.2.3.2 Layered oxide interfaces 90
3.3.2.3.3 Porous matrices and porous/fugitive coatings 90
3.3.2.3.3.1 Porous matrices .. 90
3.3.2.3.3.2 Porous Coatings.. 91
3.3.2.3.3.3 Fugitive Interfaces .. 91
3.3.3 Other . 92
3.4 FABRICATION AND FORMING OF FIBER ARCHITECTURES 92
3.4.1 General. 92
3.4.2 Fiber architectures.. 92
3.4.2.1 Uniweaves .. 92
3.4.2.2 2-D woven architectures.. 93
3.4.2.3 3-D architectures . 94
3.4.2.3.1 3-D polar architectures 94
3.4.2.3.2 3-D orthogonal architectures 94
3.4.2.3.3 3-D angle interlock architectures .. 94
3.4.2.4 2-D braided architectures 95
3.4.2.5 3-D braided architectures 95
3.4.3 Fabric weave and braid manufacturers 95
3.5 EXTERNAL PROTECTIVE COATINGS . 96
3.5.1 External coating functions .. 96
3.5.1.1 Environmental protection . 96
3.5.1.2 Thermal management 96
3.5.1.3 Wear and abrasion . 96
3.5.1.4 Signature control.. 96
3.5.1.5 Aerodynamic surface control . 96
3.5.2 Compositions and method of fabrication. 96
3.5.2.1 Compositions and structure 96
3.5.2.1.1 Oxide compositions.. 96
3.5.2.1.2 Non-oxide compositions. 96
3.5.2.1.3 Multilayer coatings 96
3.5.2.1.4 Particulate composite coatings .. 96
3.5.2.2 Methods of fabrication .. 96
3.5.2.2.1 Chemical vapor deposition 97
3.5.2.2.2 Thermal spray . 97
3.5.2.2.3 Physical vapor deposition . 97
3.5.2.2.4 Sinter/glaze coatings 97
3.5.2.2.5 Diffusion and reaction sintering.. 97
3.5.3 Engineering considerations 97
3.5.3.1 Thermodynamic compatibility 97
3.5.3.2 Coating process compatibility 97
3.5.3.3 Mechanical compatibility.. 97
3.5.3.3.1 Thermal expansion match. 97
3.5.3.3.2 Coating strength . 97
3.5.3.3.3 Coating adhesion .. 97
3.5.3.3.4 Strain accommodation. 97
3.5.3.3.5 Residual stresses.. 97
3.5.3.4 Component geometry coatability . 98
3.5.3.5 Environmental stability of coating 98
3.5.4 Examples of external coatings for CMCs 98
3.6 CHARACTERIZATION METHODS (CHEMICAL AND MICROSTRUCTURAL) 98
3.6.1 Bulk composite . 98
3.6.1.1 Composition 98
3.6.1.2 Density.. 98
3.6.1.3 Porosity. 98
3.6.1.4 Microstructure 98
3.6.1.5 Defects.. 98
3.6.1.6 Other physical 98
3.6.2 Fibers/reinforcement . 98
3.6.2.1 Composition 98
3.6.2.2 Density.. 98
3.6.2.3 Porosity. 99
3.6.2.4 Microstructure 99
3.6.2.5 Defects.. 99
3.6.2.6 Sizing . 99
3.6.2.7 Slipping . 99
3.6.2.8 Other physical 99
3.6.3 Matrices 99
3.6.3.1 Composition 99
3.6.3.2 Density.. 99
3.6.3.3 Porosity. 99
3.6.3.4 Microstructure 99
3.6.3.5 Defects.. 99
3.6.3.6 Other physical 99
3.6.4 Interfaces.. 100
3.6.4.1 Composition/chemical phase.. 100
3.7 NONDESTRUCTIVE EVALUATION METHODS FOR CMC (DEFECT CHARACTERIZATION) .. 100
3.7.1 Needs and requirements.. 100
3.7.2 Cost . 101
3.7.3 Standards . 101
3.7.4 Current methods and status 102
3.7.4.1 Porosity.. 102
3.7.4.1.1 High sensitivity thermal imaging.. 102
3.7.4.1.1.1 Status.. 102
3.7.4.1.2 Ultrasonics with image processing. 103
3.7.4.1.2.1 Status.. 103
3.7.4.1.3 Impact acoustic resonance (“The Ping Test”) .. 104
3.7.4.1.3.1 Status.. 104
3.7.4.2 Density 104
3.7.4.2.1 X-ray imaging 104
3.7.4.2.1.1 X-ray radiography. 104
3.7.4.2.1.2 X-ray computed tomography.. 105
3.7.4.2.2 Ultrasonics with image processing. 106
3.7.4.3 Required thermal properties 106
3.7.4.4 Defect detection. 106
3.7.4.4.1 Delaminations .. 106
3.7.4.4.2 Degree and extent of voids 107
3.7.4.4.3 Missing plys 107
3.7.4.4.4 Ply drop-offs .. 107
3.7.4.4.5 Machining induced damage .. 107
3.7.4.5 In-service inspection (ISI) by NDE/NDC 107
3.7.4.5.1 Fiber-matrix interface degradation . 107
3.7.4.5.2 Foreign object damage (FOD) and delaminations . 108
3.7.5 Developing methods 108
3.8 QUALITY CONTROL OF STARTING MATERIALS 108
3.9 MACHINING .. 108
4 QUALITY CONTROL OF FINAL PRODUCTS 108
4.1 INTRODUCTION . 108
4.2 QUALITY ASSURANCE .. 108
4.3 MATERIAL PROPERTY VERIFICATION 108
4.4 STATISTICAL PROCESS CONTROL .. 108
5 APPLICATIONS, CASE HISTORIES AND LESSONS LEARNS 108
PART B. DESIGN AND SUPPORTABILITY 114
6 DESIGN AND ANALYSIS 114
6.1 INTRODUCTION ..114
6.2 DESIGN CONSIDERATIONS.114
6.2.1 CMC design guidelines ..114
6.2.2 Status of CMC design systems ..114
6.2.3 CMC component design and development..114
6.2.4 Design allowables .114
6.3 DESIGN REQUIREMENTS.114
6.3.1 Static or creep loads - mechanical, thermal, stress/creep rupture, hot streaks.114
6.3.2 Low cycle fatigue114
6.3.3 High cycle fatigue..114
6.3.4 Thermal cycling ..114
6.3.5 Thermo-mechanical fatigue..114
6.4 DESIGN CRITERIA .115
6.4.1 Durability requirements ..115
6.4.2 Damage tolerance.115
6.5 DATA REQUIREMENTS115
6.5.1 Killer tests..115
6.5.1.1 Environmental conditioning and pre-cracking .115
6.5.1.2 Loads 115
6.5.1.3 Step temperature creep at constant stress115
6.5.1.4 Step stress creep test at constant temperature..115
6.5.1.5 Low cycle fatigue test ..115
6.5.1.6 High cycle fatigue test .115
6.5.2 Configuration shaped coupons ..115
6.5.3 Composite “T” subelements with interlaminar cracks .115
6.6 ATTACHMENTS116
6.6.1 Thermally free attachment designs ..116
6.6.2 Thermally free curled liner.116
6.6.3 Thermally free flat liner116
6.6.4 Rib-stiffened liners.116
6.6.5 Composite fastener design ..116
7 SUPPORTABILITY .116
7.1 INTRODUCTION AND TERMINOLOGY..116
7.2 SUPPORTABILITY ELEMENTS116
7.2.1 System engineering and integration.116
7.2.2 Joining .116
7.2.3 Inspectability.116
7.2.4 Repairability..116
7.2.5 Maintainability..116
7.2.6 Environmental compliance 117
7.2.7 Support implementation .117
7.2.8 Logistics requirements 117
PART C. TESTING..119
8 THERMO-MECHANICAL-PHYSICAL TEST METHODS - OVERVIEW .119
8.1 INTRODUCTION ..119
8.1.1 Building block approach .119
8.1.2 Test level and data uses.119
8.1.2.1 Structural complexity levels . 120
8.1.2.2 Data application categories . 121
8.1.2.2.1 Screening tests. 121
8.1.2.2.2 Material qualification tests.. 121
8.1.2.2.3 Acceptance tests . 122
8.1.2.2.4 Equivalence tests 122
8.2 TEST PROGRAM PLANNING.. 122
8.2.1 Overview .. 122
8.2.2 Baseline and alternate approaches for statistically-based properties 123
8.2.3 Issues of data equivalence.. 123
8.2.4 Test method selection. 123
8.2.5 Population sampling and sizing. 123
8.2.6 Material and processing variation 123
8.2.7 Material operating limit .. 123
8.2.8 Non ambient testing 123
8.2.9 Data normalization .. 123
8.2.10 Data documentation . 123
8.2.11 Application specific testing needs.. 123
8.3 RECOMMENDED TEST MATRICES 123
8.3.1 Material screening 123
8.3.2 Material qualification 124
8.3.3 Material acceptance test matrices 124
8.3.4 Alternate material equivalence test matrices . 124
8.3.5 Generic material/structural element test matrices 125
8.3.6 Alternate approaches to basis values 125
8.3.7 Data substantiation for use of MIL-HDBK-17 basis values . 125
8.4 DATA REDUCTION AND DOCUMENTATION.. 126
8.4.1 Introduction.. 126
8.4.2 Layer properties from composites 126
8.4.3 Data normalization .. 126
8.4.3.1 Normalization theory 126
8.4.3.2 Normalization methodology . 126
8.4.3.3 Practical application of normalization theory .. 128
8.4.4 Data documentation requirements .. 128
9 MATERIAL TESTING & CHARACTERIZATION FOR SUBMISSION OF DATA TO MIL-HDBK-17. 129
9.1 INTRODUCTION . 129
9.2 MATERIAL AND PROCESS SPECIFICATION REQUIREMENTS 129
9.3 DATA SAMPLING REQUIREMENTS 129
9.4 TEST METHOD REQUIREMENTS 129
9.4.1 Thermal . 129
9.4.1.1 Conductivity . 129
9.4.1.1.1 Bulk CMC 129
9.4.1.1.2 Matrix. 129
9.4.1.1.3 Fiber .. 129
9.4.1.1.4 Interphase .. 129
9.4.1.1.5 Overcoat.. 130
9.4.1.2 Diffusivity .. 130
9.4.1.2.1 Bulk CMC 130
9.4.1.2.2 Matrix. 132
9.4.1.2.3 Fiber .. 132
9.4.1.2.4 Interphase .. 132
9.4.1.2.5 Overcoat.. 132
9.4.1.3 Expansion . 132
9.4.1.3.1 Bulk CMC 132
9.4.1.3.2 Matrix. 134
9.4.1.3.3 Fiber .. 134
9.4.1.3.4 Interphase .. 134
9.4.1.3.5 Overcoat.. 134
9.4.1.4 Specific heat 134
9.4.1.4.1 Bulk CMC 134
9.4.1.4.2 Matrix. 137
9.4.1.4.3 Fiber .. 137
9.4.1.4.4 Interphase .. 137
9.4.1.4.5 Overcoat.. 137
9.4.1.5 Thermal shock 137
9.4.1.5.1 Bulk CMC 137
9.4.1.5.2 Matrix. 137
9.4.1.5.3 Fiber .. 137
9.4.1.5.4 Interphase .. 137
9.4.1.5.5 Overcoat.. 137
9.4.1.6 Thermal fatigue.. 137
9.4.1.6.1 Bulk CMC 137
9.4.1.6.2 Matrix. 137
9.4.1.6.3 Fiber .. 137
9.4.1.6.4 Interphase .. 138
9.4.1.6.5 Overcoat.. 138
9.4.2 Mechanical .. 138
9.4.2.1 Tension .. 138
9.4.2.1.1 Bulk CMC 138
9.4.2.1.1.1 In-plane monotonic tensile strength (ambient temperature) 138
9.4.2.1.1.2 In-plane monotonic tensile strength (elevated temperature) 140
9.4.2.1.1.3 Trans-thickness monotonic tensile strength (ambient temperature) 142
9.4.2.1.1.4 Trans-thickness monotonic tensile strength (elevated temperature).. 142
9.4.2.1.1.5 Cyclic fatigue (ambient temperature) . 142
9.4.2.1.1.6 Cyclic fatigue (elevated temperature) 144
9.4.2.1.1.7 Creep.. 144
9.4.2.1.2 Matrix. 146
9.4.2.1.3 Fiber .. 146
9.4.2.1.3.1 Monotonic tensile strength (ambient temperature) . 146
9.4.2.1.3.2 Monotonic tensile strength (elevated temperature). 148
9.4.2.1.4 Interphase .. 148
9.4.2.1.5 Overcoat.. 148
9.4.2.2 Compression 148
9.4.2.2.1 Bulk CMC 148
9.4.2.2.2 In-plane monotonic compressive strength (ambient temperature). 148
9.4.2.2.3 Matrix. 150
9.4.2.2.4 Fiber .. 150
9.4.2.2.5 Interphase .. 150
9.4.2.2.6 Overcoat.. 150
9.4.2.3 Shear .. 150
9.4.2.3.1 Bulk CMC 150
9.4.2.3.1.1 In-plane monotonic shear strength (ambient temperature) 150
9.4.2.3.1.2 In-plane monotonic shear strength (elevated temperature) 152
9.4.2.3.1.3 Interlaminar monotonic shear strength (ambient temperature) 152
9.4.2.3.1.4 Interlaminar monotonic shear strength (elevated temperature) 154
9.4.2.3.2 Matrix. 154
9.4.2.3.3 Fiber .. 154
9.4.2.3.4 Interphase .. 154
9.4.2.3.5 Overcoat.. 154
9.4.2.4 Flexure 154
9.4.2.4.1 Bulk CMC 154
9.4.2.4.1.1 Monotonic flexural strength (ambient temperature) 154
9.4.2.4.1.2 Monotonic flexural strength (elevated temperature) 157
9.4.2.4.1.3 Monotonic shear strength (ambient temperature) 160
9.4.2.4.2 Matrix. 162
9.4.2.4.3 Fiber .. 162
9.4.2.4.4 Interphase .. 162
9.4.2.4.5 Overcoat.. 162
9.4.2.5 Fracture . 162
9.4.2.5.1 Bulk CMC 162
9.4.2.5.2 Matrix. 162
9.4.2.5.3 CMC fiber 162
9.4.2.5.4 CMC interphase .. 162
9.4.2.5.5 CMC overcoats. 162
9.4.3 Physical . 162
9.4.3.1 Density 162
9.4.3.1.1 Bulk CMC 163
9.4.3.1.2 Matrix. 165
9.4.3.1.3 Fiber .. 165
9.4.3.1.4 Interphase .. 167
9.4.3.1.5 Overcoat.. 167
9.4.3.2 Electrical 167
9.4.3.2.1 Bulk CMC 167
9.4.3.2.2 Matrix. 167
9.4.3.2.3 Fiber .. 167
9.4.3.2.4 Interphase .. 167
9.4.3.2.5 Overcoat.. 167
9.4.3.3 Elastic constants 167
9.4.3.3.1 Bulk CMC 167
9.4.3.3.2 Matrix. 167
9.4.3.3.3 Fiber .. 167
9.4.3.3.4 Interphase .. 167
9.4.3.3.5 Overcoat.. 168
9.4.3.4 Volume fraction .. 168
9.4.3.4.1 Bulk CMC 168
9.4.3.5 Dimensions .. 170
9.4.3.5.1 Matrix (grain size) 170
9.4.3.5.2 Fiber (diameter) 170
9.4.4 Chemical Properties 172
9.4.5 Electrical Properties 172
9.4.6 Environmental Testing 172
10 EVALUATION OF REINFORCEMENTS . 173
10.1 INTRODUCTION .. 173
10.2 MECHANICAL PROPERTIES 173
10.2.1 Elastic (Poisson’s Ratio, modulus) 173
10.2.2 Strength (FT, RT) 173
10.2.3 Creep/creep rupture . 173
10.2.4 Fatigue 173
10.3 THERMAL PROPERTIES. 173
10.3.1 Expansion.. 173
10.3.2 Conductivity.. 173
10.3.3 Environmental (corrosion, erosion, wear, etc.) 173
10.3.4 Oxidation 173
11 EVALUATION OF MATRIX MATERIALS. 173
11.1 INTRODUCTION 174
11.2 MECHANICAL PROPERTIES 174
11.2.1 Elastic (Poisson’s Ratio, modulus) 174
11.2.2 Strength (HT, RT) 174
11.2.3 Creep/creep rupture . 174
11.2.4 Fatigue. 174
11.3 THERMAL PROPERTIES. 174
11.3.1 Expansion.. 174
11.3.2 Conductivity .. 174
11.3.3 Environmental (corrosion, erosion, wear, etc.) 174
11.3.4 Oxidation 174
11.3.5 Other physical (powder or preform char.).. 174
12 EVALUATION OF INTERFACE MATERIAL .. 174
13 EVALUATION OF COMPOSITES .. 175
13.1 INTRODUCTION .. 175
13.2 MECHANICAL PROPERTIES 175
13.2.1 Elastic (Poisson’s Ratio, modulus) 175
13.2.2 Strength (HT, RT) ILT/ILS .. 175
13.2.3 Creep/creep rupture . 175
13.2.4 Fatigue 175
13.2.5 Open-hole tension/compression strength (notch sensitivity) .. 175
13.2.6 Interfacial shear properties 175
13.3 ENVIRONMENTAL PROPERTIES.. 175
13.3.1 Thermal expansion 175
13.3.2 Conductivity.. 175
13.3.3 Environmental (corrosion, erosion, wear, salt fog, etc. .. 175
13.3.4 Environmental effects (oxidation, corrosion, etc. ) 176
13.3.5 Oxidation 176
13.4 REACTIONS AT THE INTERFACE (DEBONDING, DIFFUSION, ETC.) (7.9) .. 176
13.5 THERMAL SHOCK RESISTANCE .. 176
13.6 ELECTRICAL PROPERTIES.. 176
13.7 DIELECTRIC PROPERTIES .. 176
13.8 IMPACT RESISTANCE.. 176
13.9 STATIC AND DYNAMIC FATIGUE .. 176
13.10 PROPORTIONAL LIMIT . 176
13.11 INTERLAMINAR SHEAR PROPERTIES 176
13.12 STRAIN AT FRACTURE. 176
13.13 STRESS-STRAIN CURVES. 177
14 SUBCOMPONENT TESTING – OVERVIEW OF PROBLEM.. 177
14.1 INTRODUCTION .. 177
14.2 JOINT TESTING 177
14.2.1 Definitions.. 177
14.2.2 Failure modes.. 177
14.2.3 Thermal effects 177
14.2.4 Joint configurations .. 177
14.2.5 Design requirements 177
14.2.6 Material bearing strength .. 177
14.2.7 Open-hole tension/compression strength . 177
14.2.8 Thermal-mechanical fatigue strength.. 177
14.2.9 Creep and stress rupture .. 177
14.2.10 Fastener qualification tests 178
14.3 TUBES.. 178
15 MACHINING & GRINDING. 178
15.1 INTRODUCTION .. 178
15.2 MACHINING CONSIDERATIONS 178
15.3 TOOLING REQUIREMENTS.. 178
15.4 SPECIMEN PREPARATION 178
PART D. DATA REQUIREMENTS AND DATA SETS 180
16 DATA SUBMISSION, FORMAT AND REQUIREMENTS. 180
16.1 INTRODUCTION .. 180
16.2 PURPOSE 180
16.3 FORMAT AND UNITS. 180
16.4 DESIGN PROPERTIES. 205
17 STATISTICAL METHODS .. 205
17.1 INTRODUCTION .. 205
17.1.1 An overview of methods for calculating statistically based properties . 205
17.1.2 Computer software 205
17.1.3 Symbols.. 205
17.1.4 Statistical terms .. 205
17.2 BACKGROUND. 205
17.2.1 Statistically-based design allowables.. 205
17.2.2 Basis values for unstructured data 205
17.2.3 Basis values in the presence of batch-to-batch variability 205
17.2.4 Batches, panels, and confounding 205
17.2.5 Sample size guidelines for determining basis values . 206
17.3 CALCULATION OF STATISTICALLY BASED MATERIAL PROPERTIES.. 206
17.3.1 Guide to computational procedures . 206
17.3.2 Subpopulation compatibility – structured or unstructured. 206
17.3.3 Detecting outliers 206
17.3.4 Basis values for unstructured data 206
17.3.5 Basis values for structured data. 206
17.3.6 Exploratory data analysis .. 206
17.3.7 Examples of computational procedures. 206
17.4 MISCELLANEOUS STATISTICAL METHODS.. 206
17.4.1 Confidence intervals for the coefficient of variation . 206
17.4.2 Statistical procedures for process control . 206
17.4.3 Alternate material statistical procedures 206
17.4.4 Typical stress-strain curves.. 207
17.5 STATISTICAL TABLES AND APPROXIMATIONS 207
18 CMC PROPERTY DATA.. 207
18.1 INTRODUCTION .. 207
18.1.1 Organization of data in handbook . 207
18.1.2 Presentation of data . 207
18.1.3 Material coding and documentation . 207
18.1.4 Materials systems codes 207
18.1.5 Material orientation codes . 207
18.1.6 Symbols, Abbreviations, and systems of units 207
18.1.7 Definitions.. 207
18.2 CMC SYSTEMS - PROPERTY DATA 207
18.2.1 CMC system #1.. 208
18.2.2 CMC system #2.. 212
18.2.3 CMC system #3.. 218
18.2.4 CMC system #4.. 224
18.2.5 CMC system #5.. 227
18.2.6 CMC system #6.. 233
APPENDIX A. DERIVATION OF THE RESIDUAL STRENGTH REDUCTION EXPRESSIONS FOR LCF AND RUPTURE LOADINGS. 239
INDEX. 243
CONCLUDING MATERIAL 245

Contribute Article
Spider Optimizer

© Copyright 2000 - 2020, by Engineers Edge, LLC www.engineersedge.com
All rights reserved
Disclaimer | Feedback | Advertising | Contact

Date/Time:


User Reviews/Comments:

There are currently no comments available.


Add a Comment (you must be logged in to post comment Register):
Name:
Email: (Optional)
Comment: