Pneumatic Actuator Design and Operation Control Signal Analysis

Hydraulic and Pneumatic Knowledge

[ Previous Page ] [ Article Start ]

Pneumatic Actuator Design and Operation

For example, as the control signal increases, a valve inside the positioner admits more supply air Figure F2 Pneumatic Actuator with Controller and Positioner to the actuator. As a result, the control valve moves downward. The linkage transmits the valve position information back to the positioner. This forms a small internal feedback loop for the actuator. When the valve reaches the position that correlates to the control signal, the linkage stops supply air flow to the actuator. This causes the actuator to stop. On the other hand, if the control signal decreases, another valve inside the positioner opens and allows the supply air pressure to decrease by venting the supply air. This causes the valve to move upward and open. When the valve has opened to the proper position, the positioner stops venting air from the actuator and stops movement of the control valve.

An important safety feature is provided by the spring in an actuator. It can be designed to position a control valve in a safe position if a loss of supply air occurs. On a loss of supply air, the actuator in Figure F2 will fail open. This type of arrangement is referred to as "air-to-close, spring-to-open" or simply "fail-open." Some valves fail in the closed position. This type of actuator is referred to as "air-to-open, spring-to-close" or "fail-closed." This "fail-safe" concept is an important consideration in many systems design.

Related: